• Title/Summary/Keyword: Voltage Stability

Search Result 1,468, Processing Time 0.029 seconds

Fabrication of Planar Multi-junction Thermal Converter (평면형 다중접합 열전변환기의 제작)

  • Kwon, Sung-Won;Park, S.I.;Cho, Y.M.;Kang, J.H.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.17-24
    • /
    • 1996
  • Planar multi-junction thermal converters were fabricated for precise measurements of the ac voltage and current by an ac-dc transfer method. A heater and a thermocouple array were fabricated onto a sandwiched membrane, $Si_{3}N_{4}$ (200 nm) / $SiO_{2}$ (400 nm) / $Si_{3}N_{4}$ (200 nm), a thickness of $0.8\;{\mu}m$ and a size of $2{\times}4\;mm^{2}$, which is supported by a surrounding frame. The NiCr heater is located at the center of the membrane vertically. Hot junctions of $48{\sim}156$ pairs of thermocouples (Cu-CuNi44) are located near or onto the heater, and cold junctions are located onto the silicon frame. Output of the thermal converters for 10 mA dc input was $76\;mV{\sim}382\;mV$ dependent on a model, and short term stability of the outputs was ${\pm}5{\sim}15\;ppm$/ 10 min with 5 mA dc input. Responsivity in air was in the range of $3.9{\sim}14.5V/W$. Responsivity of the model BF48 in air which has 48 thermocouples was 2 times or greater than that of 3 dimensional multi-junction thermal converter in vacuum which has 56 thermocouples. AC-DC transfer differences with an input of 10 mA or less were less than ${\pm}1\;ppm$ in the frequency range from 5 Hz to 2 kHz, and about $2{\sim}3\;ppm$ at 5 kHz and 10 kHz.

  • PDF

Design of 20 W Class-E Amplifier Including Protection for Wireless Power Transmission at ISM 13.56 MHz (보호 회로를 포함한 무선 전력 전송용 ISM 13.56 MHz 20 W Class-E 앰프 설계)

  • Nam, Min-Young;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.613-622
    • /
    • 2013
  • In this paper, an inductive clamping class-E power amplifier has been tested for wireless power transmission at ISM band, 13.56 MHz. The implemented power amplifier is designed to operate stably without destroying power transistor in wireless power transmission system which basically keeps not to align between a transmitting antenna and a receiving antenna. The power amplifier is also designed to enhance harmonic filtering characteristic. The amplifier was tested with a DC supply voltage of 28 V and input power of 25 dBm at 13.56 MHz. The test results show the output power level of 43 dBm, the difference power level between fundamental frequency and second harmonic frequency of more than 55 dBc, the dc current consumption of 830 mA, and the high power-added efficiency of 85 %. Finally, the implemented power amplifier operated normally with 830 mA DC current consumption from 28 V source when the two antennas were aligned, and the power transmission was successful. But when the two antennas were not aligned, its DC current consumption automatically decreased down to 420 mA to protect the switching transistor.

Manufacture of Portable Inflatable Kayak Using Ultra High Pressure Drop Stitch (초고압 공간지를 이용한 포터블 인플레터블 카약 제작)

  • Park, Chan-Hong;Park, Byeong-Ho;Park, Jong-Dae;Seong, Hyeon-Kyeong;Lim, Lee-Young
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.551-557
    • /
    • 2013
  • In this paper, we manufactured portable inflatable kayak using ultra high pressure drop stitch. by improving inflatable kayaks' performance with a design using the extra-high-voltage special space paper, they were manufactured to go near to performance of hard shell kayaks. The kayaks were manufactured having all merits of the performance of hard shell kayaks and functionality and portability of the inflatable kayaks, and through performance evaluation of test products, the performance was compared with previous hard shell kayaks. About 6 knot of target speed in the verification result of resistance performance, the developed kayak was more excellent than the HOBIE-KONA kayak by 12.33%. In case of same displacement in a result of inclination test, the centroid of the developed kayak was less distributed by 22.7% than the HOBIE-KONA kayak, based on the bottoms of the ships. This makes the difference for righting arm (GZ) lessened to some degree because the developed kayak is lower than the HOBIE-KONA kayak in the centroid. In the dynamic stability of ship bodies, the HOBIE-KONA kayak showed a little excellent performance. However, in rudder force and resistance factor, the developed kayak was more outstanding than the HOBIE-KONA kayak.

The electrical characteristics of flexible organic field effect transistors with flexible multi-stacked hybrid encapsulation

  • Seol, Yeong-Guk;Heo, Uk;Park, Ji-Su;Lee, Nae-Eung;Lee, Deok-Gyu;Kim, Yun-Je;An, Cheol-Hyeon;Jo, Hyeong-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.176-176
    • /
    • 2010
  • One of the critical issues for applications of flexible organic thin film transistors (OTFTs) for flexible electronic systems is the electrical stabilities of the OTFT devices, including variation of the current on/off ratio (Ion/Ioff), leakage current, threshold voltage, and hysteresis under repetitive mechanical deformation. In particular, repetitive mechanical deformation accelerates the degradation of device performance at the ambient environment. In this work, electrical stability of the pentacene organic thin film transistors (OTFTs) employing multi-stack hybrid encapsulation layers was investigated under mechanical cyclic bending. Flexible bottom-gated pentacene-based OTFTs fabricated on flexible polyimide substrate with poly-4-vinyl phenol (PVP) dielectric as a gate dielectric were encapsulated by the plasma-deposited organic layer and atomic-layer-deposited inorganic layer. For cyclic bending experiment of flexible OTFTs, the devices were cyclically bent up to 105 times with 5mm bending radius. In the most of the devices after 105 times of bending cycles, the off-current of the OTFT with no encapsulation layers was quickly increased due to increases in the conductivity of the pentacene caused by doping effects from $O_2$ and $H_2O$ in the atmosphere, which leads to decrease in the Ion/Ioff and increase in the hysteresis. With encapsulation layers, however, the electrical stabilities of the OTFTs were improved significantly. In particular, the OTFTs with multi-stack hybrid encapsulation layer showed the best electrical stabilities up to the bending cycles of $10^5$ times compared to the devices with single organic encapsulation layer. Changes in electrical properties of cyclically bent OTFTs with encapsulation layers will be discussed in detail.

  • PDF

Joining and Performance of Alkali Metal Thermal-to-electric Converter (AMTEC) (알칼리금속 열전기변환장치의 접합과 출력성능)

  • Suh, Min-Soo;Lee, Wook-Hyun;Woo, Sang-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.665-671
    • /
    • 2017
  • The alkali-Metal Thermal-to-electric Converter (AMTEC) is one of the promising static energy conversion technologies for the direct conversion of thermal energy to electrical energy. The advantages over a conventional energy converter are its high theoretical conversion efficiency of 40% and power density of 500 W/kg. The working principle of an AMTEC battery is the electrochemical reaction of the sodium through an ion conducting electrolyte. Sodium ion pass through the hot side of the beta"-alumina solid electrolyte (BASE) primarily as a result of the pressure difference. This pressure difference across the BASE has a significant effect on the overall performance of the AMTEC system. In order to build the high pressure difference across the BASE, hermeticity is required for each joined components for high temperature range of $900^{\circ}C$. The AMTEC battery was manufactured by utilizing robust joining technology of BASE/insulator/metal flange interfaces of the system for both structural and electrical stability. The electrical potential difference between the anode and cathode sides, where the electrons emitted from sodium ionization and recombined into sodium, was characterized as the open-circuit voltage. The efforts of technological improvement were concentrated on a high-power output and conversion efficiency. This paper discusses about the joining and performance of the AMTEC systems.

Effects of Pyrite (FeS2) Particle Sizes on Electrochemical Characteristics of Thermal Batteries (열전지의 전기화학적 특성에 미치는 황철석(FeS2) 입자크기의 영향)

  • Choi, Yusong;Yu, Hye-Ryeon;Cheong, Haewon;Cho, Sungbaek;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.161-166
    • /
    • 2014
  • In this study, effects of pyrite ($FeS_2$) particle sizes on the electrochemical characteristics of thermal batteries are investigated using unit cells made of pulverized pyrite by ball-milling. At $450^{\circ}C$ unit cell discharge test, the electrochemical capacity of $1.46{\mu}m$ pyrite-cell largely increases compared to $98.4{\mu}m$ pyrite-cell, and their internal resistances also decrease. These results are attributed to the increase in the active reaction area of pyrite by ball milling. However, at $500^{\circ}C$ unit cell discharge test, a $1.46{\mu}m$ pyrite cell shows lower internal resistance than that of $98.4{\mu}m$ pyrite cell only at Z-phase region ($FeS_2{\rightarrow}Li_3Fe_2S_4$). After that, a $1.46{\mu}m$ pyrite cell shows a decrease in the cell voltage and an rapid increase of the internal resistance in J-phase region ($Li_3Fe_2S_4{\rightarrow}LiFe_2S_4$) is observed compared to those of $98.4{\mu}m$ pyrite cell. It can be concluded that at the higher temperature, the thermally unstable pulverized pyrite is decomposed thermally as well as self discharged, simultaneously, which causes the higher resistance and lower capacity at $500^{\circ}C$ in J-phase than that of $98.4{\mu}m$ pyrite cell.

Surface Electrode Modification and Improved Actuation Performance of Soft Polymeric Actuator using Ionic Polymer-Metal Composites (이온성고분자-금속복합체를 이용한 유연고분자 구동체의 표면특성 개선과 구동성 향상)

  • Jung, Sunghee;Lee, Myoungjoon;Song, Jeomsik;Lee, Sukmin;Mun, Museoung
    • Applied Chemistry for Engineering
    • /
    • v.16 no.4
    • /
    • pp.527-532
    • /
    • 2005
  • Ionic polymer metal composites (IPMC) are soft polymeric smart materials having large displacement at low voltage in air and water. The polymeric electrolyte actuator consists of a thin and porous membrane and metal electrodes plated on both faces, in impregnation electro-plating method. The response and actuation of actuator are governed. Among many factors governing the activation and response of IPMC actuator, the surface electrode plays an important role. In this study, the well-designed modification of electrode surface was carried out in order to improve the chemical stability well as electromechanical characteristics of the IPMC actuator. We employed Ion Beam Assisted Deposition (IBAD) method to prepare the topologically homogeneous thin surface electrode. After roughing the surface of Nafion membrane in order to get a larger surface area, the IPMC was prepared by impregnation for electro-plating and re- coating on the surface through traditional chemical deposition, followed by an additional surface treatment with high conductive metals with IBAD. It was observed that our IPMC specimen shows the enhanced surface electrical properties as well as the improved actuation and response characteristics under applied electric field.

A Study on the Catalytic Characteristics of Oxygen Reduction in an Alkaline Fuel Cell I. Synthesis of La0.6Sr0.4Co1-xFexO3 and Reduction Reaction of Oxygen (알칼리형 연료전지에서 산소환원에 미치는 촉매 특성 연구 I. La0.6Sr0.4Co1-xFexO3의 합성과 산소환원반응)

  • Moon, Hyeung-Dae;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.543-553
    • /
    • 1996
  • Oxygen reduction in an alkaline fuel cell was studied by using perovskite type oxides as an oxygen electrode catalyst. The high surface area catalysts were prepared by malic acid method and had a formula of $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$(x=0.00, 0.01, 0.10, 0.20, 0.35 and 0.50). From the result of XRD pattern and specific surface area due to the amount of Fe substitution and the consumption of ammonia-water, the complex formation of Fe ion with $NH_3$ was the main factor for both the phase stability of perovskite and the increase of specific surface area. Multi-step calcination was necessary to give a single phase of perovskite in catalyst precursor. The crystal structure of the catalysts was simple cubic perovskite, which was verified from the XRD patterns of the catalysts. The activity of oxygen reduction was monitored by the techniques of cyclic voltammetry, static voltage-current method, and current interruption method. The activity(current density) of oxygen reduction showed its minimum at x=0.01 and its maximum between 0.20 and 0.35 of x-value in $La_{0.6}Sr_{0.4}Co_{1-x}Fe_xO_3$. This tendency was independent of the change of surface area.

  • PDF

Continuously Recycling Sterilization of Yakju(Rice Wine) Using Pulsed Electric Fields (고전장펄스를 이용한 약주의 연속 재순환 살균)

  • Kim, Su-Yeon;Mok, Chul-Kyoon;Pyun, Yu-Ryang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.410-415
    • /
    • 1999
  • Yakju was sterilized with high-voltage pulses of short time of a continuous pulsed electric field (PEF) system. The initial microbial counts of Yakju were $2.2{\times}10^{5}$ CFU/mL for total aerobes. The pH, acidity and electric conductivity of Yakju were 3.82, 0.37% and 1.24 mS/cm, respectively. Yakju was treated with exponential-wave formed electric pulses of 100 Hz for $0{\sim}4000{\mu}s$ under the field strength of $20{\sim}35\;kV/cm$. The lethal effect of electric fields on microorganisms was resulted from the breakdown of the cell membrane induced by the transmembrane electric potential. The critical values of the external field for the sterilization were 16.0 kV/cm for total aerobes. Logarithmic survival rates decreased linearly at low electric field strength, but curvilinearly at high electric field strength with treatment time. The sterilization of Yakju was more largely affected by the electric field strength than by the treatment time. Any changes in pH, acidity, and the growth of microorganisms were not found in the PEF treated Yakju during the storage at both $4^{\circ}C\;and\;30^{\circ}C$.

  • PDF

Analysis of Contact Properties by Varying the Firing Condition of AgAl Electrode for n-type Crystalline Silicon Solar Cell (AgAl 전극 고온 소성 조건 가변에 따른 N-형 결정질 실리콘 태양전지의 접촉 특성 분석)

  • Oh, Dong-Hyun;Chung, Sung-Youn;Jeon, Min-Han;Kang, Ji-Woon;Shim, Gyeong-Bae;Park, Cheol-Min;Kim, Hyun-Hoo;Yi, Jun-Sin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.461-465
    • /
    • 2016
  • n-type silicon shows the better tolerance towards metal impurities with a higher minority carrier lifetime compared to p-type silicon substrate. Due to better lifetime stability as compared to p-type during illumination made the photovoltaic community to switch toward n-type wafers for high efficiency silicon solar cells. We fabricated the front electrode of the n-type solar cell with AgAl paste. The electrodes characteristics of the AgAl paste depend on the contact junction depth that is closely related to the firing temperature. Metal contact depth with p+ emitter, with optimized depth is important as it influence the resistance. In this study, we optimize the firing condition for the effective formation of the metal depth by varying the firing condition. The firing was carried out at temperatures below $670^{\circ}C$ with low contact depth and high contact resistance. It was noted that the contact resistance was reduced with the increase of firing temperature. The contact resistance of $5.99m{\Omega}cm^2$ was shown for the optimum firing temperature of $865^{\circ}C$. Over $900^{\circ}C$, contact junction is bonded to the Si through the emitter, resulting the contact resistance to shunt. we obtained photovoltaic parameter such as fill factor of 76.68%, short-circuit current of $40.2mA/cm^2$, open-circuit voltage of 620 mV and convert efficiency of 19.11%.