• 제목/요약/키워드: Voltage Analysis Method

검색결과 1,789건 처리시간 0.027초

분산전원이 도입된 배전계통의 전압해석 방법에 관한 연구 (A Study for the Voltage Analysis Method of Distribution Systems with Distributed Generation)

  • 김태응;김재언
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권2호
    • /
    • pp.69-78
    • /
    • 2003
  • This paper presents a voltage analysis method of distribution systems interconnected with DG(Distributed Generation). Nowadays, small scale DG becomes to be introduced into power distribution systems. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only ULTC(Under Load Tap Changer). This paper presents a voltage analysis method of distribution systems with DC for proper voltage regulation of power distribution systems with ULTC. In order to develop the voltage analysis method, distribution system modeling method and advanced loadflow method are proposed. Proposed method has been applied to a 22.9 kV practical power distribution systems.

새로운 접촉 및 보폭전압 측정법에 의한 접지전극 주위의 위험전압 분석기법 (Analysis Technique of Risk Voltage around Grounding Electrode by New Touch and Step Voltage Measurement Methods)

  • 길형준;김향곤
    • 조명전기설비학회논문지
    • /
    • 제26권6호
    • /
    • pp.81-86
    • /
    • 2012
  • This paper describes the analysis technique of risk voltage around grounding electrode by new touch and step voltage measurement methods. We have analyzed three techniques for risk voltage measurement, such as footprint-electrode method, test-probe method, and simulated-personnel method. We have selected test-probe method considering applicability of site. In order to reduce error related to the location of the auxiliary electrode, we propose a new approach to perform risk voltage measurement with minimum errors and short auxiliary electrode distances. Field tests were carried out at a grounding grid. It can be concluded that the proposed method will be satisfactory for risk voltage measurement.

직류 마이크로그리드의 전력 공유 정확도 및 전압 제어 성능 향상을 위한 전압 민감도 행렬 기반의 분산 제어 방법 (A Distributed Control Method based on Voltage Sensitivity Matrix in DC Microgrids for Improvement of Power Sharing Accuracy and Voltage Regulation Performance)

  • 이기영;고병선;이재석;김래영
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.345-351
    • /
    • 2018
  • A distributed control method is proposed to improve the power sharing performance of bidirectional distributed generators and the voltage regulation performance of a DC bus in a DC microgrid. Voltage sensitivity analysis based on power flow analysis is conducted to analyze the structural characteristics of a DC microgrid. A distributed control method using a voltage sensitivity matrix is proposed on the basis of this analysis. The proposed method uses information received through the communication system and performs the droop gain variation method and voltage shift method without additional PI controllers. This approach achieves improved power sharing and voltage regulation performance without output transient states. The proposed method is implemented through a laboratory-scaled experimental system consisting of two bidirectional distributed generators, namely, a load and a non-dispatchable distributed generator in a four-bus ring-type model. The experimental results show improved power sharing accuracy and voltage regulation performance.

3상 매트릭스 컨버터에 사용되는 옵셋전압 PWM 방법과 $V_{max}-V_{mid}$ PWM 방법의 비교분석 (Comparative Analysis of Offset Voltage PWM and $V_{max}-V_{mid}$ PWM Method for 3 Phase Matrix Converter)

  • 차한주;김우중
    • 전기학회논문지
    • /
    • 제58권2호
    • /
    • pp.285-291
    • /
    • 2009
  • In this paper, comparative analysis of offset voltage PWM method and $V_{max}-V_{mid}$ PWM method for three-phase matrix converter is addressed by using a simple analytical and graphical method. Offset voltage PWM method calculates PWM patterns in terms of offset voltage and variable slope of carrier, and it simplifies matrix converter modulation algorithm significantly. $V_{max}-V_{mid}$ PWM method generates patterns by using two phases and maintaining a remaining phase to base phase, and it is implemented in the industrial products. The most important performance criterion of modulation method is a magnitude of current ripples and it is analytically modelled. The graphical illustration of theses complex multivariable functions make per-carrier cycle and per fundamental cycle behavior of two PWM methods understood. Two modulation methods are analysed with the analytical formulas and graphics, and the analysis shows offset voltage PWM method is superior to $V_{max}-V_{mid}$ PWM method with respect to input current ripples and output voltage ripples.

순간전압강하 평가를 위한 가혹지역의 계산 (Calculation of the Area of Severity for Voltage Sag Assessment)

  • 박창현;홍준희
    • 전기학회논문지
    • /
    • 제59권6호
    • /
    • pp.1034-1040
    • /
    • 2010
  • This paper presents a calculation method of the area of severity for the stochastic assessment of voltage sags. In general, the annual expected numbers of voltage sags at an individual load point can be estimated stochastically. However, in order to assess the system voltage sag performance considering many sensitive load points together, it is necessary to determine and analysis the area of severity for the load points. The area of severity to voltage sags is the network region where the fault occurrences will simultaneously lead to voltage sags at different load points. In this paper, the concept of the voltage sag assessment and the calculation method of the area of severity are addressed. The analysis of the area of severity is performed on the IEEE 30-bus test system by using the proposed method. The method is useful for the stochastic assesment of voltage sags and the establishment of systematic plans for voltage sag mitigation.

전력 계통 정적 전압 안정도 해석법의 동일 근거에 관한 연구 (A Study on the identical basis of static voltage stability analysis methods in power systems)

  • 문영현;김백;이응혁
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.457-466
    • /
    • 1996
  • The Voltage stability problem has recently been dealt with in the literature from various points of view. The diverse theories have been established in voltage stability analysis because of the complicates of power systems and diverse phenomena of voltage collapse. Through rigorous mathematical operations, this paper shows that all the major methods used in static voltage stability, i.e - Jacobian method, voltage sensitivity method, real and reactive power loss sensitivity method and energy function method - have an identical background in theory. The results from the test in sample systems have shown the validity of this verification. (author). refs., figs., tabs.

  • PDF

Luapunov 직접법에 의한 전력계통 전압안정도 해석 (A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function)

  • 문영현;박능수;이태식
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.

AC/DC 계통의 전압안정도 해석 (Voltage Stability Analysis of AC/DC Systems)

  • 남해곤;김용학
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.89-91
    • /
    • 1995
  • This paper describes an extension or a pair or multiple load flow solutions and nose curve method developed for voltage stability analysis or AC power systems to AC/DC systems. In this approach the converters are regarded as voltage dependent loads. Assuming that the converters at the unstable (-mode) solution consume the same power equal to the power at the stable (+mode) solution, the unstable solutions or the nose curves arc determined. This method is very efficient since estimating voltage collapse point and voltage stability margin arc determined by a few iterations of multiple load flow solutions. Also the method has the advantages that since the structure or Jacobian matrix is same with that of AC load flow, modal analysis or voltage stability is readily applicable if desired.

  • PDF

SRM의 DC linke 전압리플을 고려한 단일 펄스 구동 방식의 특성 해석 (The Characteristic Analysis of SRM Dirven by Single-pulse Mode Considering the Voltage Ripple of DC Linke)

  • 이성구;정대성;이주
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.1976-1980
    • /
    • 2008
  • This paper deals the characteristic analysis of Switched Reluctance Motor(SRM) driven by single-pulse mode considering dc link voltage ripple. Two dimensional time-stepped Finite Element Method(FEM) is used to analyze the characteristic of SRM driven by single-pulse mode with dc link voltage ripple. The analysis results is verified by experimental test.

혼합형 전압안정도 해석 (Hybrid Voltage Stability Analysis)

  • 김원겸;김건중;주운표;이상중
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권2호
    • /
    • pp.43-49
    • /
    • 2000
  • It is a complex process to analyze power system voltage stability problems with all of the dynamics of a system, because a large power network system sophisticatedly consists of generators, lines, loads and so forth. So we considered the dynamics of loads so as to analyze voltage stability method- by carrying out an analysis of steady state voltage stability and dynamic voltage stability simultaneously. To perform a steady state voltage stability program in advance makes it possible to cut down on laborious calculations so that an analysis of dynamic voltage stability becomes concise. The validity and efficiency of the method presented in this paper were verified by applying the IEEE 14 bus system.

  • PDF