• 제목/요약/키워드: Voltage

Search Result 28,789, Processing Time 0.049 seconds

Asymmetry Effects on Optical Duobinary Transmitters

  • Lee, Dong-Soo;Huh, Hyun-Gue
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-7
    • /
    • 2008
  • We have theoretically investigated the asymmetry effects on 10[Gb/s] optical duobinary transmitters from the viewpoint of the driving voltage ratios by computer simulations. For driving voltage ratios(=driving voltage/switching voltage) with smaller than 100[%], the transmission performance has been greatly affected by the asymmetry of the bandwidth of LPFs than that of the Mach-Zehnder Modulator driving voltage. On the other hand, for driving voltage ratios with 100[%], the transmission performance has been degraded by the asymmetry of the driving voltage and is not sensitive to that of the bandwidth of LPFs. For the transmission performance within 1[dB] power penalty under the asymmetry condition, the driving voltage ratio with 100[%] has performed better than the low driving voltage ratios.

A Study on Condenser Characteristics at the Series Connection of Condenser and Reactor Under Voltage Unbalance (전압 불평형에서 콘덴서와 리액터의 직렬 연결시의 콘덴서의 특성 분석)

  • Kim, Il-Jung;Kim, Jong-Gyeum;Park, Young-Jeen;Kim, Sung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.325-329
    • /
    • 2010
  • Capacitor has been used principally for the power factor compensation long ago. However now it does as passive filter to reduce harmonics of nonlinear load with reactor. Most of the customer's low-voltage feeder has been designed with approximately balanced and connected at the 3 phase four wire system. But voltage and current unbalance is appeared by the mixing operation of single or three phase load etc. The addition of reactor at the condenser may rise its terminal voltage. Voltage and current values above rating can act on electrical stress on the condenser. In this paper, we calculated and measured that voltage, current and capacity of condenser are changed under the voltage balance. We conclude that magnitude and deviation of phase voltage act on major point of electrical stress.

Sensorless Control of Three Phase Converter using estimated Input Phase-Voltage and DC-link Voltage (전원전압과 DC-link 전압 추정을 통한 3상 컨버터 센서리스 제어)

  • Chu, Hung-Seok;Park, Sung-Jun;Kim, Kwong-Tae;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1233-1235
    • /
    • 2000
  • A new control method of three phase converter without measuring input phase-voltage and DC-link voltage is proposed. Input phase-voltage of these required voltages is estimated using EKF(Extended Kalman Filter) and DC-link voltage is estimated from the measured line currents and the estimated input phase-voltage. This control method is achieved without PLL(Phase Locked Loop) which senses the angle of input phase-voltage and DC-link voltage sensor. In addition, the proposed method controls high power factor and DC-link voltage utilizing the estimated phase angle. This paper describes the effectiveness of the proposed estimated algorithm through simulations.

  • PDF

A Dynamic Simulation at Voltage Instability using EMTP (EMTP를 이용한 전압 불안정 현상의 동적 시뮬레이션)

  • Heo, J.Y.;Kwon, O.S.;Kim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.131-133
    • /
    • 2003
  • Voltage instability has been studied for some decade now. But, there is not generally accepted definition of voltage instability because of the complex phenomenon and the variety of ways in which it can manifest itself. Both IEEE and CIGRE have the respective definitions. The areas of voltage instability research arc the analysis, simulation and countermeasure of voltage instability. In this paper, we perform a dynamic simulation of voltage instability and voltage collapse using EMTP MODELS. The exponential load model is designed with MODELS and this load model is connected with test power system. The result shows the process of voltage change in time domain when the voltage instability or voltage collapse occurs.

  • PDF

A Study of Voltage Drop Compensation Algorithm using Moving Average (Moving Average를 이용한 전압강하보상 알고리즘에 관한 연구)

  • Kim S.H.;Kim J.S.;Kim Y.J.;Kim Y.S.
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1202-1204
    • /
    • 2004
  • This paper propose the control algorithm for improving the power quality through the voltage compensation when source voltage is dropped. The algorithm signified occurrence of voltage drop in source voltage of each phase storing source voltage for two cycles using the concept of moving average and using the source voltage of last half cycle. If there are voltage drops in the source voltages, series active power filter compensates the differences between reference waveform and source voltage waveform. Therefore, voltage drop is compensated. It proposed series active power filter of three phases three lines to apply to the proposed algorithm and the presented experiment results verified logicality and effectiveness of the proposed algorithm.

  • PDF

A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function (Luapunov 직접법에 의한 전력계통 전압안정도 해석)

  • 문영현;박능수;이태식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.

Electrical Characteristics and Thermal Reliability of Stacked-SCRs ESD Protection Device for High Voltage Applications

  • Koo, Yong Seo;Kim, Dong Su;Eo, Jin Woo
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.947-953
    • /
    • 2012
  • The latch-up immunity of the high voltage power clamps used in high voltage ESD protection devices is very becoming important in high-voltage applications. In this paper, a stacking structure with a high holding voltage and a high failure current is proposed and successfully verified in 0.18um CMOS and 0.35um BCD technology to achieve the desired holding voltage and the acceptable failure current. The experimental results show that the holding voltage of the stacking structure can be larger than the operation voltage of high-voltage applications. Changes in the characteristics of the stacking structure under high temperature conditions (300K-500K) are also investigated.

Sensorless Control of Three Phase Converter using estimated Input Phase-Voltage and DC-link Voltage (전원전압과 DC-link 전압 추정에 의한 3상 컨버터 센서리스 제어)

  • Chu Hung-Seok;Cheon Chang-Gun;Ahn Jin-Woo;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.227-230
    • /
    • 2001
  • A new control method of three phase converter without measuring input Phase-voltage and DC-link voltage is Proposed. Input Phase-voltage of these required voltages is estimated using EKF(Extended Kalman Filter) and DC-link voltage is estimated from the measured line currents and the estimated input phase-voltage. This control method is achieved without PLL(Phase Locked Loop) which senses the angle of input phase-voltage and DC-link voltage sensor. In additon, the proposed method controls high power factor and DC-link voltage utilizing the estimated phase angle. This paper describes the effectiveness of the proposed estimated algorithm through simulations.

  • PDF

Design of a Voltage Multipler Circuit using a Modified Voltage Doubler (개선된 배전압 회로를 이용한 전압증배기 회로 설계)

  • Yeo, Hyeop-Goo;Jung, Seung-Min;Sonh, Seung-Il;Kang, Min-Koo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.696-698
    • /
    • 2012
  • This paper introduces a new DC-DC voltage multiplier using a Dickson's charge pump and a modified voltage doubler. The voltage obtained from a conventional Dickson's chrage pump was reused for accelerating the voltage multiplication and the architecture of the proposed voltage multiplier would not decrease the device reliability of DMOS. The proposed 6-stage voltage multiplier generate about 33V with 3V voltage source. To evaluate the proposed voltage multiplier, simulations were performed with Magna DMOS technology. The simulated voltage multiplication agrees well with a theoretical value, therefore, this paper introduces a new fast voltage multiplier with minimum devices.

  • PDF

Copper Particle Effect on the Breakdown Strength of Insulating Oil at Combined AC and DC Voltage

  • Wang, You-Yuan;Li, Yuan-Long;Wei, Chao;Zhang, Jing;Li, Xi
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.865-873
    • /
    • 2017
  • Converter transformer is the key equipment of high voltage direct current transmission system. The solid suspending particles originating from the process of installation and operation of converter transformer have significant influence on the insulation performance of transformer oil, especially in presence of DC component in applied voltage. Under high electric field, the particles easily lead to partial discharge and breakdown of insulating oil. This paper investigated copper particle effect on the breakdown voltage of transformer oil at combined AC and DC voltage. A simulation model with single copper particle was established to interpret the particle effect on the breakdown strength of insulating oil. The experimental and simulation results showed that the particles distort the electric field. The breakdown voltage of insulating oil contaminated with copper particle decreases with the increase of particle number, and the breakdown voltage and the logarithm of particle number approximately satisfy the linear relationship. With the increase of the DC component in applied voltage, the breakdown voltage of contaminated insulating oil decreases. The simulation results show that the particle collides with the electrode more frequently with more DC component contained in the applied voltage, which will trigger more discharge and decrease the breakdown voltage of insulating oil.