• Title/Summary/Keyword: Volcanic soil

Search Result 234, Processing Time 0.02 seconds

Studies on Identification and Enumeration of Soil Microorganisms in Mineral and Volcanic Ash Soil of the Jeju Island (제주도(濟州道) 화산회토양(火山灰土壤)의 미생물상(微生物相)에 관(關)한 연구(硏究))

  • Lee, Sang-Kyu;Suh, Jang-Sun;Mun, Jae-Hyun;Song, Chang-Hun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.2
    • /
    • pp.135-140
    • /
    • 1988
  • A laboratory experiment was conducted to find out the number of soil microorganisms, identification and enumeration of soil microbial species on the mineral and volcanic ash soil with different cropping system of the Jeju Island. The results obtained were summarized as follows: 1. The number of bacteria was high in mineral soil with rotation of upland crops than that of volcanic ash soil with continuous cropping system. 2. According to identification of soil bacteria, the most of bacteria were composed to short rod with Gram negative. Among the bacteria species, Rhizobium spp. and Flavobacterium spp. were most high population in both of mineral and volcanic ash soil. 3. The number of fungi in mineral soils were reduced by the rotated cultivation of upland crops but no significant differences were observed in volcanic ash soil with continuous cropping system. On the other hand, Aspergillus spp., Fusarium spp., and Penicillium spp. were most high population in both of mineral and volcanic ash soil. 4. Comparing of the number and species ot microorganism to the cash crops soil in main land, about 10 to 100 times for bacteria and more than two times for the number and species of fungi were lowered in Jeju Island soil.

  • PDF

Changes of Humus Types Affected by Application of Animal Manures Compostin Jeju Upland Soil (가축분 퇴비의 시용량에 따른 제주 밭토양의 부식의 형태별 함량 변화)

  • Hwang, Ki-Sung;Yoo, Bong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.364-369
    • /
    • 2005
  • In Jeju island, the southernmost island of Korea, the field soils are mostly consisted of volcanic and non-volcanic soils. Animal manures of 0, 50, 100, and 150 MT/ha were treated to analyse the humus content changes by application amounts and the soil types. The results are as follows; Humus distribution type was A in the most of the volcanic soils while a few soils was type B, and it was possible to confirm that the humus process has occurred in the soils. Most of the non-volcanic soils was Rp and B type, therefore, the humus content change pattern was different from the volcanic soils. The nitrate-nitrogen content and the humus content showed positive correlation of $R^2=0.5263$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.524$. The carbon content and the humus content showed positive correlation of $R^2=0.469$ in the volcanic soils, while that of non-volcanic soils was $R^2=0.550$.

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF

Composition and Genesis of Volcanic Ash Soils in Jeju Island I. Physico-Chemical and Macro-Micromorphological Properties (제주도 화산회사인의 특성 및 생성에 관한 연구. I. 이화학 및 형태학적 특성)

  • ;George Stoops
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 1988
  • The effect of soil forming factors on the pedogenesis of basaltic volcanic ash soils and the influence of allophane material on soil properties have been investigated on 5 chronosequence soils situated from at the near sea coast up to the foot slope of Mt. Halla in Jeju Island. Time seems to be the important soil forming factor which today differentiates soil of the Island. Songag and Donghong soils developed in lower elevations are older and somewhat less influenced by ash shower. However, soils developed at higher elevations, Pyeongdae and Heugag, are rather younger and strongly influence by the ash. It is also proved that the parent materials are very heterogeneous. They mainly are basaltic with some contamination of acidic volcanic ashes and continental aeolian deposits where a considerable amount of quartz encountered in most soils studied. Many physico-chemical properties of soil, such NaF pH, phosphate sorption power, pH and extractable acidity are parameters to differentiate andepts and non-andeptic soils.

  • PDF

Estimation Model for Simplification and Validation of Soil Water Characteristics Curve on Volcanic Ash Soil in Subtropical Area in Korea (난지권 화산회토양의 토색별 토양수분 특성곡선 및 단일화 추정모형)

  • Hur, Seung-Oh;Moon, Kyung-Hwan;Jung, Kang-Ho;Ha, Sang-Keun;Song, Kwan-Cheol;Lim, Han-Cheol;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.329-333
    • /
    • 2006
  • Most of volcanic ash soils in South Korea are distributed in Jeju province which is an island placed on southern part of Korea and has steep slope mountain area. There are many soils containing high contents of organic matter (OM) derived from volcanic ash in Jejudo, also. Therefore, irrigation and drainage in volcanic ash soil different with general soil which has low OM content have to be applied with another management way, but studies searching appropriate methods for them are set on insufficient situation because the area of volcanic ash soil in South Korea is only 1.3% (130,000ha). This study was conducted for analysis of soil water content and irrigation quantity appropriate for crops cultivated in volcanic ash soil with high OM content. Although soils with different soil color have the same soil texture, soil water characteristics curve by soil color showed the difference of water retention capability by OM content. But, this characteristics classified with soil color could be unified by scaling technique with similitude analysis method which get dimensionless water content using a present water content, a residual water content and saturated water content (or water content at 10kPa). A relation of gravimetric soil water content (GSWC) and dimensionless water content by the results showed a form of power function. The dimensionless water content (DWC) express a relative saturation degree of present water content. This was also expressed by van Genuchten model which describe the relation between relative saturation degrees and matric potentials. These results on soil water characteristics curve (SWCC) of volcanic ash soil will be the basic of irrigation plan in area having high organic contents into soil.

A Simple Method for Preserving Underground Water Resources in Volcanic Island (Jeju)

  • Hwang, Junhyuk;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.29-35
    • /
    • 2016
  • Being mostly made up of highly permeable basalt and volcanic ash soil, Jeju Island's lithosphere characterizes its streams to be dry, flowing only when precipitation is happening. Under this condition, this research was motivated to identify the need of conservation of underground water, which is taking up most of (84% of) Jeju's water usage, and made an attempt to reduce the permeability of stream beds so that it can replace underground water and be used instead. To this end, this study suggested a simple method to make dry streams to carry water all-year-round by reducing permeability of stream floor. The experiment of permeability was performed on the porous basalt and compared it with that of same basalt with volcanic ash soil and Jumunjin sand layer added on top. The results showed a dramatic decrease in permeability of water when both volcanic ash soil and Jumunjin sand is were layered on top of porous basalt. Despite being gained in a controlled environment with a simple test, this result may provide a realistic and effective method of preserving Jeju Island's underground water which ultimately is a method of resolving water related issues.

Changes of Electrical Conductivity and Nitrate Nitrogen in Soil Applied with Livestock Manure (가축분 퇴비 시용에 따른 밭 토양의 EC 및 질산태질소 함량 변화)

  • Hwang, Ki-Sung;Ho, Qyo-Soon;Kim, Hyoung-Deug;Choi, Ju-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.3
    • /
    • pp.197-201
    • /
    • 2002
  • This study was conducted in Jeju Island to find the effects of livestock manure application on the changes in soil salt concentration and $NO_3-N$ contents. Soil samples were collected from Goojua-Tong (volcanic ash soil) and Aewol-Tong(non-volcanic ash soil) to 50 cm depth and were mixed with livestock manure to 20 cm depth in PVC container(30 cm diameter, 1 m height). Animal manures of cattle, pig, and fowl were adjusted to 0, 50, 100,150 ton/ha. Animal manure applications increased the salt concentrations in soil. The salt concentration was increased as the fowl manure amount was increased The effects were larger in order of fowl manure > cattle manure $\fallingdotseq$ pig manure. $NO_3-N$ contents in soil showed a sharp increase by applications of fowl manure, but the increase was slow when the cattle and pig manures were applied. In volcanic ash soil, there was no change in phosphate contents by application of animal manures, but the phosphate contents increased in non-volcanic ash soil with the application of animal manure, especially by fowl manure.

Effects of Liquid Pig Manure on Growth of Potato, Soil Chemical Properties and Infiltration Water Quality (돈분액비 시용이 감자 생육, 토양화학성 및 침투수질에 미치는 영향)

  • Kang, Ho-Jun;Yang, Sang-Ho;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1130-1136
    • /
    • 2011
  • This study was carried out to determine the effects of pig slurry on growth of potato (Solanum tuberosum L. cv. Dejima), soil chemistry properties and infiltration water quality in volcanic ash soil and non-volcanic ash soil of Jeju. Fertilization of liquid pig manure was based on nitrogen. In volcanic ash soil and non-volcanic ash soil, there was no difference in the height and diameter of stems in chemical fertilizer and liquid pig manure application treatments. Also yields of potatoes were no significantly difference in chemical fertilizer and liquid pig manure application treatments. pH in all soil was increased by application of liquid pig manure compared to the chemical fertilizer plot. Contents of exchangeable K in all soil were accumulated excessively by fertilization of pig manure 100% compared to the chemical fertilizer 100%. But there was no difference between the chemical fertilizer 50%+liquid pig manure 50% and chemical fertilizer 100%. No difference between the chemical fertilizer and liquid pig manure was observed in available phosphate, exchangeable Ca and Mg. $NO_3$-N concentration of infiltration water sample collected at 70cm of soil depth was lower non-fertilizer than chemical fertilizer and liquid pig manure application treatments. In volcanic ash soil, the $NO_3$-N concentration of infiltration water was decreased from early, except liquid manure 100%. In non volcanic ash soil, the $NO_3$-N concentration of infiltration water increased until October 8, but then was reduced. In all soils, $NO_3$-N concentration of infiltration water was higher in the liquid manure 100% than those in the chemical fertilizer 100% and chemical fertilizer 50%+liquid pig manure 50%, but there were no differences. In conclusion, the growth of potato, fertilization of soil and $NO_3$-N content of infiltration water were not different between chemical 50%+liquid pig manure 50% and chemical 100% plot. So, liquid pig manure could be substituted for some amount of chemical fertilizer.

Recommendation of Optimum Amount of Fertilizer Nitrogen Based on Soil Organic Matter for Chinese Cabbage and Cabbage in Volcanic Ash Soils of Cheju Island (제주도 화산회토양의 배추와 양배추에 대한 질소의 시비추천식 설정)

  • Song, Yo-Sung;Kwak, Han-Kang;Yeon, Byeong-Yeal;Lee, Choon-Soo;Yoon, Jung-Hui;Moon, Doo-Young;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.105-111
    • /
    • 2002
  • To find out the optimum nitrogen fertilization levels for the leafy vegetables in volcanic ash soils of Cheju island, fertilization effects on chinese cabbage chinese and cabbage were investigated through pot and field experiments. In pot experiment conducted with two volcanic ash soils of Cheju island, optimum rates of nitrogen fertilizer was ranged from 294 to $331kg\;ha^{-1}$ for chinese cabbage. At field experiment with one volcanic soil, the optimum N fertilizer was $331kg\;ha^{-1}$. On the basis of soil organic matters, fertilizer recommendation formula for cabbage, could be established by using 1.03 of comparison factors (F) compared with chinese cabbage : y=344.54-0.285x for chines cabbage, y= 354.88-0.294x for cabbage, where y is the recommendation amount of nitrogen fertilizer with x g $kg^{-1}$ of organic matter in soil. Actual optimum rate of nitrogen fertilizer for chinese cabbage under field condition was much more similar to the value caluculated by the revised nitrogen recommendation formula than the amount of nitrogen fertilizer recommended by the current formula in volcanic ash soil.

Isolation and Characterization of Soil Humic Substances (토양 부식질의 추출 및 특성)

  • 신현상;이창훈;유지호;정근호;이창우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.191-194
    • /
    • 2002
  • Humic acid, fulvic acid and humin present in volcanic ash soil were isolated by IHSS standard procedure and their characteristics were analyzed as a basic study to evaluate the effect of humic substances on the behaviour of pollutants in contaminated surface soil. The volcanic ash soil contained 42.1 % of total organic matter based on the oven-dried soil, and humin, humic and fulvic acids corresponded to 67.5 %, 15.2 %, 7.6 % of TOM respectively. Structural informations of the humic fractions were obtained from their elemental analysis and IR, CPMAS C-13 NMR spectral analysis and the differences among them are discussed with their C/H, O/C ratios and distributions of carbon types in the molecules.

  • PDF