• Title/Summary/Keyword: Volcanic ash

Search Result 256, Processing Time 0.023 seconds

Monitoring and Forecasting the Eyjafjallajökull Volcanic Ash using Combination of Satellite and Trajectory Analysis (인공위성 관측자료와 궤적분석을 이용한 Eyjafjallajökull 화산재 감시와 예측)

  • Lee, Kwon Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.139-149
    • /
    • 2014
  • A new technique, namely the combination of satellite and trajectory analysis (CSTA), for exploring the spatio-temporal distribution information of volcanic ash plume (VAP) from volcanic eruption. CSTA uses the satellite derived ash property data and a matching forward-trajectories, which can generate airmass history pattern for specific VAP. In detail, VAP properties such as ash mask, aerosol optical thickness at 11 ${\mu}m$ ($AOT_{11}$), ash layer height, and effective radius from the Moderate Resolution Imaging Spectro-radiometer (MODIS) satellite were retrieved, and used to estimate the possibility of the ash forecasting in local atmosphere near volcano. The use of CSTA for Iceland's Eyjafjallaj$\ddot{o}$kull volcano erupted in May 2010 reveals remarkable spatial coherence for some VAP source-transport pattern. The CSTA forecasted points of VAP are consistent with the area of MODIS retrieved VAP. The success rate of the 24 hour VAP forecast result was about 77.8% in this study. Finally, the use of CSTA could provide promising results for VAP monitoring and forecasting by satellite observation data and verification with long term measurement dataset.

Characteristics of Volcanic Ash Soils (화산회토(火山灰土)의 특성(特性)에 관(關)하여)

  • Shin, Yong Hwa;Kim, Hyong Ok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.8 no.3
    • /
    • pp.113-119
    • /
    • 1975
  • Volcanic Ash Soils are widely distributed in Jeju island, and constitute the important upland soils which are either presently being cultivated or are suitable for reclaiming. The characteristics of Volcanic Ash Soils according to data made available by previous studies in Jeju and the outside of the country are as following: The most conspicuous mineralogical property is the presence of amorphous mineral colloids. The colloids have large and highly reactive surface to which the common physical and chemical properties are related. Soils are low in bulk density and higher both in porosity and permeability. Accumulation of humus in the upper part of soil is found in great quantity. Cation exchange capacity is high mainly due to high humus content, but the absorbing intensity of ammonium and potassium is weaker than that of crystalline clays. The phosphate absorption coefficient is extremely high and deficiency of minor element may occur both crops and animals. Soils are densely populated with actinomycetes and anaerobic bacteria. Nitrification and activity of urease are distinctly stronger than that of non-Volcanic Ash Soils.

  • PDF

A Case Analysis of Volcanic Ash Dispersion under Various Volcanic Explosivity Index of the Mt. Baegdu (백두산 분화 강도에 따른 화산재 확산 사례 분석)

  • Lee, Soon-Hwan;Jang, Eun-Suk;Lee, Hyun-Mi
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.280-293
    • /
    • 2012
  • In order to clarify the characteristics of dispersion of volcanic tephra emitted from the Mt. Baegdu with various eruption environment, numerical analysis were performed using numerical models, Weather Research and Forecast (WRF) and FLEXPART. Synoptic conditions at 12 October 2010 was adopted because the volcanic ash of Mt. Baegdu can reach the Korean peninsula and its dispersion pattern was compared with different Volcanic Explosivity Index (VEI) and particle size. Predominant size of falling out ash flowing in the peninsular is smaller than 0.5 mm and the ash large than the size is difficult to get in the peninsular due to the its weak ability of truculent diffusion. the difference of ash distribution with various VEI scenarios is not so much but number density of ash in the air is dramatically changed. Volcanic ash tends to be deposited easily in eastern coastal area such as Gangneung and Busan, because of the inflow of ash from East Sea and barrier effect of the Taeback mountains along the east coast of the Korean Peninsula. Accumulated amount of ash deposition can be increased in short period in several urban areas.

A Simple Method for Preserving Underground Water Resources in Volcanic Island (Jeju)

  • Hwang, Junhyuk;Ban, Hoki
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.9
    • /
    • pp.29-35
    • /
    • 2016
  • Being mostly made up of highly permeable basalt and volcanic ash soil, Jeju Island's lithosphere characterizes its streams to be dry, flowing only when precipitation is happening. Under this condition, this research was motivated to identify the need of conservation of underground water, which is taking up most of (84% of) Jeju's water usage, and made an attempt to reduce the permeability of stream beds so that it can replace underground water and be used instead. To this end, this study suggested a simple method to make dry streams to carry water all-year-round by reducing permeability of stream floor. The experiment of permeability was performed on the porous basalt and compared it with that of same basalt with volcanic ash soil and Jumunjin sand layer added on top. The results showed a dramatic decrease in permeability of water when both volcanic ash soil and Jumunjin sand is were layered on top of porous basalt. Despite being gained in a controlled environment with a simple test, this result may provide a realistic and effective method of preserving Jeju Island's underground water which ultimately is a method of resolving water related issues.

Developing Interactive Simulator for Predicting Volcanic Ash (실시간 대화형 화산재 확산 예측 시스템 개발)

  • Kim, Hae-Dong;Lee, Ho-Man
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.527-532
    • /
    • 2014
  • According to the analysis of volcanic observation data around Korean peninsula, the activities of volcano increase continuously. For example, the volcanic eruption of Mt. Sakurajima is an example, and Mt. Baekdu can be another example potentially. In these regards, developing unified system including realtime prediction and 3D visualization of volcano ash are important to prepare the volcanic disaster systematically. In this technical report, an interactive simulator embedding dispersion algorithm and 3D visualization engine is developed. This system can contribute to the realtime prediction of volcanic disaster scientifically.

An Study on Development of Water Systems Damage Management Standard Caused by Mt. Baekdu Eruption (백두산 분화로 인한 상수도 시설 피해 관리 기준 설정 연구)

  • Choi, Jung-Ryel;Kim, Min Gyu;Lee, Gyeng-Bin;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.259-266
    • /
    • 2018
  • The purpose of this study is to establish the management standards of water systems in Korea. The damage factors of the water systems were classified by accumulation, adsorption, and abrasion. According to the thickness of volcanic ash, the management stage of the water systems was derived in four steps; VAD (Volcanic Ash Degree) I (0~1 mm), II (1~3 mm), III (3~5 mm), IV (over 5 mm). Finally, the management standards for water systems which consist of alarm levels, impacts of volcanic ashes, procedures and action plan to deal with the damage, are presented.

Ash-Flow Tuffs of the Chisulryoung Volcanic Formation and Associated Welded Tuff Instrusion, Weolseong District, Southern Korea (월성(月城) 남부(南部) 치술령 지역(地域)의 화산암(火山岩))

  • Park, Ki Hwa;Kim, Seon Eok
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.125-134
    • /
    • 1985
  • The Chisulryoung Volcanic Formation comprises a thick sequence of pyroclastic flow deposits. Six members are distinguished, each representing separate flow units, comprising weakly to intensely welded acidic tuffs. A stock of welded acidic tuff, 1 km in diameter, intrudes hornblende granodiorite and sediments of Late Cretaceous age and the lower part of the Chisulryoung Volcanic Tuff Formation and may represent the vent through which the upper flows of the Chisulryoug Volcanic Formation were erupted.

  • PDF

Composition and Genesis of Volcanic Ash Soils in Jeju Island I. Physico-Chemical and Macro-Micromorphological Properties (제주도 화산회사인의 특성 및 생성에 관한 연구. I. 이화학 및 형태학적 특성)

  • ;George Stoops
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.32-39
    • /
    • 1988
  • The effect of soil forming factors on the pedogenesis of basaltic volcanic ash soils and the influence of allophane material on soil properties have been investigated on 5 chronosequence soils situated from at the near sea coast up to the foot slope of Mt. Halla in Jeju Island. Time seems to be the important soil forming factor which today differentiates soil of the Island. Songag and Donghong soils developed in lower elevations are older and somewhat less influenced by ash shower. However, soils developed at higher elevations, Pyeongdae and Heugag, are rather younger and strongly influence by the ash. It is also proved that the parent materials are very heterogeneous. They mainly are basaltic with some contamination of acidic volcanic ashes and continental aeolian deposits where a considerable amount of quartz encountered in most soils studied. Many physico-chemical properties of soil, such NaF pH, phosphate sorption power, pH and extractable acidity are parameters to differentiate andepts and non-andeptic soils.

  • PDF

Composition and Genesis of Volcanic Ash Soils in Jeju Island, II. Mineralogy of Sand, Silt and Clay Fractions (제주도 화산회사인의 특성 및 생성에 관한 연구. II. 사, 미사, 점토의 광물학적 특성)

  • ;Rene Tavernier
    • Journal of the Mineralogical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.40-47
    • /
    • 1988
  • Mineralogy of sand, silt and clay fractions from the five chronosequence soils of Jeju Island is studied with the X-ray, TEM and SEM techniques. Soils of Songag and Donghong situated at lower elevations are generally developed on relatively of ash or alluvial deposits and contain mainly ferromagnesian minerals and feldspars, with some quartz, mica and volcanic glass. Crystalline minerals are dominant in the clay fraction; halloysite and vermiculite are abundant but small amounts of allophane are present. Clay migration results in well developed ferrigargillan, Soils of Pyeongdae and Heugag located at higher elevations are developed on relatively young volcanic ash with some contamination of continental aeolian dust probably containing quartz which may be come from acid ash shower. The absence of clay illuivation is due to the dominance of allophane. This clay mineral is associated with some gibbsite, imogolite and halloysite.

  • PDF

Improvement Manual for Waterworks Facilities to Reduce the Damage of Volcanic Ash (화산재 피해 저감을 위한 상수도시설 대응매뉴얼 개선방안)

  • Yoon, Hyoung-Uk;La, Da-Hye;Lee, Gyeng-Bin;Kim, Min Gyu;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.2
    • /
    • pp.267-276
    • /
    • 2018
  • Volcanic ash from volcanic eruptions spreads to vast areas hundreds of kilometers away, and when volcanic ash flows into surface waters, it will be damaged by water supply. In case of water supply facilities, it provides to people drinking water and domestic water, be consumed by the people cause social disorder when water supply is cut off due to damage such as water pollution caused by harmful materials of volcanic ash. However, when we looked at the disaster management manual, the establishment of a water supply facility manual to deal with the damage of volcanic ash was found to be insufficient. Therefore, in this study, the existing volcanic and water pollution related manuals were analyzed and problems were derived. In order to make quick situation judgment and response activities, we have suggested the scope of the water supply facility manual, disaster type, major missions and system of related organizations, and scenario of crisis situation by disaster type.