• Title/Summary/Keyword: Volcanic arc

Search Result 79, Processing Time 0.029 seconds

Petrochemistry and Geologic Structure of Icheon Granitic Gneiss around Samcheog Area, Korea (삼척지역 이천화강편마암의 암석화학과 지질구조)

  • Cheong Won-Seok;Cheong Sang-Won;Na Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.1 s.43
    • /
    • pp.25-38
    • /
    • 2006
  • Metamophic rocks of Samcheog area, northeastern Yeongnam massif, was studied petrochemically. This area includes Precambrian Hosanri Formation (schists and gneisses) and granitoid (Icheon granitic gneiss, leucocratic granite and Hongjesa granite), Cambrian sedimentary rocks, and Cretaceous sedimentary and acidic volcanic rocks. Hosanri formation is composed of quartz+plagioclase+K-feldspar+biotite+muscovite+granet${\pm}$cordierite${\pm}$sillimanite. Mineral assemblage of biotite granitic gneiss, which is massive granodioritic rock with weak foliation, is similar to Hosanri formation. According to mineral assemblages, metamorphic rocks of studied area can be divided into two metamorphic zones (garnet and sillimanite zones). From Icheonri area, major, trace and rare earth element data of biotite granitic gneiss and luecocratic granite suggest that source rock is politic rocks of Hosanri formation and source magma was formed by anatexis and experienced fractionation of plagioclase. Trace element diagram show collisional environment such as syn-collisional, volcanic arc granite. Orientation of faults in study area have three maximum concentrations, $N54^{\circ}\;W/77^{\circ}\;SW,\;N49^{\circ}\;W/81^{\circ}\;NE\;and\;N10^{\circ}\;W/38^{\circ}\;NE$. Structure analysis suggests that faults in study area ware formed by uplift and compression. Faulting age is guessed after Tertiary because some shear joints is developed in dikes to intrusive Cretaceous acidic volcanic rock. Hosanri formation and Icheon granitic gneiss had experienced similar deformation history because they have maximum concentration to foliations, $N89^{\circ}\;E/55^{\circ}\;SE\;and\;N80^{\circ}\;E/45^{\circ}\;SE$, respectively.

Applicability of plate tectonics to the post-late Cretaceous igneous activities and mineralization in the southern part of South Korea( I ) (한국남부(韓國南部)의 백악기말(白堊紀末) 이후(以後)의 화성활동(火成活動)과 광화작용(鑛化作用)에 대(對)한 판구조론(板構造論)의 적용성(適用性) 연구(硏究)( I ))

  • Min, Kyung Duck;Kim, Ok Joon;Yun, Suckew;Lee, Dai Sung;Joo, Sung Whan
    • Economic and Environmental Geology
    • /
    • v.15 no.3
    • /
    • pp.123-154
    • /
    • 1982
  • Petrochemical, K-Ar dating, Sand Rb/Sr isotopes, metallogenic zoning, paleomagnetic and geotectonic studies of the Gyongsang basin were carried out to examine applicability of plate tectonics to the post-late Cretaceous igneous activity and metallogeny in the southeastern part of Korean Peninsula. The results obtained are as follows: 1. Bulgugsa granitic rocks range from granite to adamellite, whose Q-Ab-Or triangular diagram indicates that the depth and pressure at which the magma consolidated increase from coast to inland varying from 6 km, 0.5-3.3 kb in the coastal area to 17 km, 0.5-10 kb in the inland area. 2. The volcanic rocks in Gyongsang basin range from andesitic to basaltic rocks, and the basaltic rocks are generally tholeiitic in the coastal area and alkali basalt in the inland area. 3. The volcanic rocks of the area have the initial ratio of Sr^{87}/Sr^{86} varying from 0.706 to 0.707 which suggests a continental origin; the ratio of Rb/Sr changing from 0.079-0.157 in the coastal area to 0.021-0.034 in the inland area suggests that the volcanism is getting younger toward coastal side, which may indicate a retreat in stage of differentiation if they were derived from a same magma. The K_2O/SiO_2 (60%) increases from about 1.0 in the coastal area to about 3.0 in the inland area, which may suggest an increase indepth of the Benioff zone, if existed, toward inland side. 4. The K-Ar ages of volcanic rocks were measured to be 79.4 m.y. near Daegu, and 61.7 m.y. near Busan indicating a southeastward decrease in age. The ages of plutonic rocks also decrease toward the same direction with 73 m.y. near Daegu, and 58 m.y. near Busan, so that the volcanism predated the plutonism by 6 m.y. in the continental interior and 4 m.y. along the coast. Such igneous activities provide a positive evidence for an applicability of plate tectonics to this area. 5. Sulfur isotope analyses of sulfide minerals from 8 mines revealed that these deposits were genetically connected with the spacially associated ingeous rocks showing relatively narrow range of ${\delta}^{34}S$ values (-0.9‰ to +7.5‰ except for +13.3 from Mulgum Mine). A sequence of metallogenic zones from the coast to the inland is delineated to be in the order of Fe-Cu zone, Cu-Pb-Zn zone, and W-Mo zone. A few porphyry type copper deposits are found in the Fe-Cu zone. These two facts enable the sequence to be comparable with that of Andean type in South America. 6. The VGP's of Cretaceous and post Cretaceous rocks from Korea are located near the ones($71^{\circ}N$, $180^{\circ}E$ and $90^{\circ}N$, $110^{\circ}E$) obtained from continents of northern hemisphere. This suggests that the Korean peninsula has been stable tectonically since Cretaceous, belonging to the Eurasian continent. 7. Different polar wandering path between Korean peninsula and Japanese islands delineates that there has been some relative movement between them. 8. The variational feature of declination of NRM toward northwestern inland side from southeastern extremity of Korean peninsula suggests that the age of rocks becomes older toward inland side. 9. The geological structure(mainly faults) and trends of lineaments interpreted from the Landsat imagery reveal that NNE-, NWW- and NEE-trends are predominant in the decreasing order of intensity. 10. The NNE-trending structures were originated by tensional and/or compressional forces, the directions of which were parallel and perpendicular respectively to the subduction boundary of the Kula plate during about 90 m.y. B.P. The NWW-trending structures were originated as shear fractures by the same compressional forces. The NEE-trending structures are considered to be priginated as tension fractures parallel to the subduction boundary of the Kula plate during about 70 m.y. B.P. when Japanese islands had drifted toward southeast leaving the Sea of Japan behind. It was clearly demonstrated by many authors that the drifting of Japanese islands was accompanied with a rotational movement of a clock-wise direction, so that it is inferred that subduction boundary had changed from NNE- to NEE-direction. A number of facts and features mentioned above provide a suite of positive evidences enabling application of plate tectonics to the late Cretaceous-early Tertiary igneous activity and metallogeny in the area. Synthesizing these facts, an arc-trench system of continental margin-type is adopted by reconstructing paleogeographic models for the evolution of Korean peninsula and Japan islands. The models involve an extention mechanism behind the are(proto-Japan), by which proto-Japan as of northeastern continuation of Gyongsang zone has been drifted rotationally toward southeast. The zone of igneous activity has also been migrated from the inland in late-Cretaceous to the peninsula margin and southwestern Japan in Tertiary.

  • PDF

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea (영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성)

  • Wee, Soo-Meen;Park, Jae-Yong
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.427-443
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.

Geological History and Landscapes of the Juwangsan National Park, Cheongsong (국립공원 주왕산의 지질과정과 지형경관)

  • Hwang, Sang Koo;Son, Young Woo;Choi, Jang Oh
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.235-254
    • /
    • 2017
  • We investigate the geological history that formed geology and landscapes of the Juwangsan National Park and its surrounding areas. The Juwangsan area is composed of Precambrian gneisses, Paleozoic metasedimentary rocks, Permian to Triassic plutonic rocks, Early Mesozoic sedimentary rocks, Late Mesozoic plutonic and volcanic rocks, Cenozoic Tertiary rhyolites and Quaternary taluses. The Precambrian gneisses and Paleozoic metasedimentary rocks of the Ryeongnam massif occurs as xenolithes and roof-pendents in the Permian to Triassic Yeongdeok and Cheongsong plutonic rocks, which were formed as the Songrim orogeny by magmatic intrusions occurring in a subduction environment under the northeastern and western parts of the area before a continental collision between Sino-Korean and South China lands. The Cheongsong plutonic rocks were intruded by the Late Triassic granodiorite, which include to be metamorphosed as an orthogneiss. The granodiorite includes geosites of orbicular structure and mineral spring. During the Cretaceous, the Gyeongsang Basin and Gyeongsang arc were formed by a subduction of the Izanagi plate below East Asia continent in the southeastern Korean Peninsula. The Gyeongsang Basin was developed to separate into Yeongyang and Cheongsong subbasins, in which deposited Dongwach/Hupyeongdong Formation, Gasongdong/Jeomgok Formation, and Dogyedong/Sagok Formation in turn. There was intercalated by the Daejeonsa Basalt in the upper part of Dogyedong Formation in Juwangsan entrance. During the Late Cretaceous 75~77 Ma, the Bunam granitoid stock, which consists of various lithofacies in southwestern part, was made by a plutonism that was mixing to have an injection of mafic magma into felsic magma. During the latest Cretaceous, the volcanic rocks were made by several volcanisms from ubiquitous andesitic and rhyolitic magmas, and stratigraphically consist of Ipbong Andesite derived from Dalsan, Jipum Volcanics from Jipum, Naeyeonsan Tuff from Cheongha, Juwangsan Tuff from Dalsan, Neogudong Formation and Muposan Tuff. Especially the Juwangsan Tuff includes many beautiful cliffs, cayon, caves and falls because of vertical columnar joints by cooling in the dense welding zone. During the Cenozoic Tertiary, rhyolite intrusions formed lacolith, stocks and dykes in many sites. Especially many rhyolite dykes make a radial Cheongsong dyke swarm, of which spherulitic rhyolite dykes have various floral patterns. During the Quaternary, some taluses have been developed down the cliffs of Jungtaesan lacolith and Muposan Tuff.

The Exploration Methodology of Seafloor Massive Sulfide Deposit by Use of Marine Geophysical Investigation (해양 지구물리 탐사를 이용한 해저열수광상 부존지역 탐지 방법)

  • Kim, Hyun-Sub;Jung, Mee-Sook;Kim, Chang-Hwan;Kim, Jong-Uk;Lee, Kyeong-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Lau basin of the south Pacific, as an active back arc basin, is promising area bearing seafloor massive hydrothermal deposit that is located in a subduction zone between the Pacific ocean plate and Indo-Australian continental plate. We performed multi-beam bathymetry survey in the Lau basin using EM120, to find out high hydrothermal activity Bone. Fonualei Rift and Spreading Center (FRSC) and Mangatolou Triple Junction (MTJ) area were selected for precise site survey through seafloor morphology investigation. The result of surface and deep-tow magnetometer survey showed that Central Anomaly Magnetization High (CAMH) recorded which is associated with active ridge in FRSC-2 and revealed very low magnetic anomalies that can be connected to past or present high hydrothermal activity in MTJ-1 seamount area. Moreover, the physical and chemical tracers of hydrothermal vent flume, i.e., transmission, hydrogen ion concentration (pH), adenosine triphosphate (ATP), methane (CH4) by use of CTD system, showed significant anomalies in those areas. From positive vent flume results, we could conclude that these areas were or are experiencing very active volcanic activities. The acquired chimney and hydrothermal altered bed rock samples gave us confidence of the existence of massive hydrothermal deposit. Even though not to use visual exploration equipment such as ROV, DTSSS, etc., traditional marine geophysical investigation approach might be a truly cost-effective tool for exploring seafloor hydrothermal massive deposit.

Neoproterozoic A-type Volcanic Activity within the Okcheon Metamorphic Belt (옥천변성대 충주지역의 신원생대 A-형 화산활동)

  • Koh Sang-Mo;Kim Jong-Hwan;Park Kye-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.3 s.41
    • /
    • pp.157-168
    • /
    • 2005
  • Trachytic rocks among the bimodal metavolcanic rocks of the Gyemyeongsan Formation and adjacent areas are investigated. Some rocks reveal very high content of iron and most rocks show very high abundances of rare earth elements and high field strength elements. Most rocks show significant Eu negative anomaly, which can be interpreted as the result of plagioclase fractionation. Lack of noticeable Nb negative anomaly indicates not-involvement of crustal material in their generation, which excludes the arc environment or remelting of continental crust from their genetic process. Metatrachytes of the Gymyeongsan Formation are plotted within the within-plate environment of the tectonic discrimination diagram utilizing immobile high field strength element Nb and Y. They also show typical characteristics of A-type magma, such as high Ga content. Considering their affinity to Al-type of Eby (1992) and their age of 750 Ma (Lee et al., 1998), they seem to have been produced by the differentiation of mantle-derived within-plate magmatism at the rift, related with the separation of Neoproterozoic supercontinent Rodinia. Possible connection of Gyemyeongsan and Munjuri Formations of the Okcheon metamorphic belt, at least part of them, to the Cathaysia block of South China during the Neoproterozoic is strongly suggested.

Geochemical Study of the Cretaceous Granitic Rocks in Yeosu Area (여수 지역에 분포하는 백악기 화강암류에 대한 지화학적 연구)

  • Wee, Soo-Meen;Kim, Eun-Hyo
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.267-281
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks are widely distributed in the southern part of the Korean peninsula, possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeastern part of the Eurasian plate. Geochemical and petrological study on the Cretaceous granitic rocks of the Yeosu area were carried out in order to constrain the petrogenesis of the granitic rocks and to establish the paleotectonic environment of the southwestern part of the Korean peninsula. Igneous rocks of the Yeosu area consist of diorite, hornblende biotite pite and micrographic granite. Chondrite normalized REE patterns show generally enriched in LREE ($(La/Lu)^{cN}$=4.2-13.3). Diorites show flat to slight negative Eu anomalies while micrographic granites have strong negative Eu anomalies. The ${\Sigma}REE$ of the granites are 76.2-235 ppm, which corresponds to the range of the continental margin granite. Whole rock chemical data of the granitic rocks from the Yeosu area indicate that the rocks have characteristics of calc-alkaline series in the subalkaline field. On the A/NK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate.

Geology and Mineral Resources of the Ogcheon Zone: Mineralization in the Pyeongchang-Jucheon Area, Kangwon-Do, Korea (옥천대(沃川帶)의 지질(地質) 및 광물자원(鑛物資源)에 관(關)한 연구(硏究) -평창(平昌)~주천지역(酒泉地域)에 있어서의 광화작용(鑛化作用)-)

  • Yun, Suckew;So, Chil Sop;Kim, Kyu Han
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 1986
  • A group of 16 $Zn+Pb{\pm}Ag$ deposits distributed in the Pyeongchang-Jucheon area, Kangwon-do, South Korea, were semi-regionally investigated. These deposits are contact metasomatic and/or hydrothermal replacement types hosted in the carbonate-dominated Cambrian Machari Formation and Ordovician Ibtanri Formation, and also in the carbonate interbeds of the Precambrian argillic metasediments. Comparing some key aspects of the individual deposits, it is found that the ore deposits hosted in the Machari and Ibtanri Formations are mostly of steeply-dipping chimneys with or without skarn minerals and are rich in Ag and Pb>Zn in metal grade whereas those occuring in the carbonate interbeds of the Precambrian argillic metasediments are gently-dipping conformable lenticular orebodies mostly with skarn minerals and are generally poor in Ag and Zn>Pb. The skarn mineralization in the area appears to have occurred during the lower Cretaceous (118.7Ma) to mid-Cretaceous (107.8Ma) time assumed from the K-Ar dates of the Dowon and Pyeongchang granites which are closely associated with the skarn ore deposits. The Rb/Ba/Sr ratios of these granites indicate that they are of strongly differentiated anomalous granites, and the Nb vs. Y and Rb vs. Y+Nb plots fall on the field of volcanic arc setting. The contact aureoles are zoned, giving the sequence in order of increasing distance from igneous contact: garnet-wollastonite, granet-wollastonite-clinopyroxene and garnet-clinopyroxene in such as the Pyeongchang and Yeonwol 114 areas. Electron microprobe analyses reveal that garnets and clinopyroxenes are generally low in Fe and Mn. Garnets are grossular to intermediate grandite except for those from the Ogryong exoskarn which are richer in andradite, pyrope and spessartine fractions. This indicates that the oxidation state of skarn-forming environment at Ogryong was higher than at the other deposits. Clinopyroxenes are mostly salitic except for those from the Ogryong exoskarn which involve considerable amounts of hedenbergite and johansenite fractions. The ${\delta}^{18}O$ value of Jurassic biotite granite at Ogryong is higher (+10.21‰) than that of Cretaceous one at Chodun (+8.41‰). The ${\delta}^{13}C$ values of carbonate rocks range from -0.89‰ to 0.68‰ and the ${\delta}^{18}O$ values range from +11.91‰ to + 19.34‰ indicating that these carbonate rocks are of marine origin. However, the ${\delta}^{13}C$ values of skarn calcite and vein calcite are -4.80‰ and -12.92‰, and the ${\delta}^{18}O$ values are +5.56‰ and +10.32‰, respectively, indicating that these calcites are of hydrothermal origin. The ${\delta}^{34}S$ values of sulfide minerals range from +4.4‰ to +8.7‰ suggesting that the sulfurs are of magmatic origin.

  • PDF

Diversity of the Cretaceous basaltic volcanics in Gyeongsang Basin, Korea (경상분지내 백악기 현무암질 화산암류의 다양성)

  • 김상욱;황상구;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2000
  • The Cretaceous basaltic rocks in Gyeongsang Basin are temporally and spatially dispersed widely in thick sedimentary piles: Chilgog basaltic rock (CGB) and Cheongyongsa basaltic rock (CSB) in the Shindong Group, and Hakbong basaltic rocks (HBB), Osibbong basalt (OSB), Secheondong basaltic rocks (SCB), Haman basaltic rocks (HAB), Hama basaltic rocks (HMB), and Chaeyaksan basaltic rocks (CYB) in the Hayang Group, upwardly in their stratigraphy. Chilgog basaltic rock is merely identified as pebbles in the Shilla Conglomerate and its provenance has not been found, and it is characteristics that the volcanics except Osibbong basalt and Chaeyaksan basaltic rocks are very small in both of their thickness and extension. Petrochemical diversity of the basaltic rocks are revealed; OSB and SCB distributed in the Yeongyang Minor Basin preserve the calc-alkaline natures in major and immobile minor element geochemistry, but CGB, HBB, HAB, and CYB reflect that they might be originated from calc-alkaline basaltic magma of volcanic arc in continental margin area by trace elements and altered to alkaline suites in the viewpoint of their major element geochemistry. Major and trace element geochemistry of CSB and HMB suggests that they may be derived from within -plate alkaline magma contaminated by the upper continental crust, especially in the case of the former.

  • PDF

Volcanisms and Volcanic Processes of the Wondong Caldera, Korea (원동 칼데라의 화산작용과 화산과정)

  • 황상구;이기동;김상욱;이재영;이윤종
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.96-110
    • /
    • 1997
  • The Wondong Caldera, formed by the voluminous eruption of the rhyolitic ashflows of the Wondong Tuff which is about 1,550 m thick at the intracaldera and 550 m at the outflow, is a resurgent caldera which shows a dome structure on the central exposure of the caldera. The Wondong caldera volcanism eviscerated the magma chamber by a series of explosive eruptions during which rhyolitic magma was ejected, as small fallouts and voluminous ash-flows, to form the Wondong Tuff. The explosive eruptions began with ash-falls, progressed through pumice-falls and transmitted ash-flows. During the ash-flow phase the initial central vent eruption transmitted into late ring-fissure eruption which accompanied with caldera collapse. Contemporaneous collapse of the roop of the chamber resulted in the formation of the Wondong Caldera, a subcircular depression subsiding about 1,930 deep. Following the collapse, quartz porphyry was intruded as ring dykes along the ring fracture near the southwestern caldera rim. Subsequently the central part of the caldera floor began to be uplifted into a circular resurgent dome by the rising of residual magma. Concurrent with the resurgent doming, the volcaniclastic sediments of Hwajeri Formation were accumulated in the caldera moat and then rhyodacite lava erupted from the initial central resurgent dome and another ash-flow tuff from the northern ring fracture. After the sedimentation, the find-grained granodiorite was intruded as an arc along the eastern ring fracture of the caldera. Finally in the central part, the resurgent magma was emplaced as a hornblende biotite granite stock that formed the central dome.

  • PDF