• Title/Summary/Keyword: Volcanic Deformation.

Search Result 39, Processing Time 0.024 seconds

Analysis of the relationship between volcanic eruption and surface deformation in volcanoes of the Alaskan Aleutian Islands using SAR interferometry

  • Lee, Seulki;Lee, Chang-Wook
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.1069-1080
    • /
    • 2018
  • The Alaskan Aleutian Islands form one of the world's largest volcanic island chains. The islands are exposed to both direct and indirect damage from continuous volcanic eruptions. Surface deformation is mostly observed before volcanic eruption, but with some volcanoes, such as Ontake Volcano, deformations cannot be detected. In this study, we analyzed volcanic eruptions in the Alaskan Aleutian Islands, which is a region of frequent volcanic eruptions. Based on our results, we predicted the type of eruption that would occur on Baekdusan Volcano according to the presence or absence of surface deformation. For this purpose, 10 sites were selected from areas where recent volcanic activity had occurred in the Aleutian Islands. Additionally, Advanced Land Observing Satellite Phased Array-type L-band Synthetic Aperture Radar (ALOS-PALSAR) and European Remote Sensing (ERS)-1/2 satellite data were obtained from 10 experimental sites. Based on the radar satellite data, the volcanic surface deformations were identified, and the characteristics of the volcanic eruption were quantitatively calculated by determining the presence of surface deformation. The results of this study should facilitate the process of correlation between volcanic eruption and surface deformation.

Using SG Arrays for Hydrology in Comparison with GRACE Satellite Data, with Extension to Seismic and Volcanic Hazards

  • Crossley David;Hinderer Jacques
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.31-49
    • /
    • 2005
  • We first review some history of the Global Geodynamics Project (GGP), particularly in the progress of ground-satellite gravity comparisons. The GGP Satellite Project has involved the measurement of ground-based superconducting gravimeters (SGs) in Europe for several years and we make quantitative comparisons with the latest satellite GRACE data and hydrological models. The primary goal is to recover information about seasonal hydrology cycles, and we find a good correlation at the microgal level between the data and modeling. One interesting feature of the data is low soil moisture resulting from the European heat wave in 2003. An issue with the ground-based stations is the possibility of mass variations in the soil above a station, and particularly for underground stations these have to be modeled precisely. Based on this work with a regional array, we estimate the effectiveness of future SG arrays to measure co-seismic deformation and silent-slip events. Finally we consider gravity surveys in volcanic areas, and predict the accuracy in modeling subsurface density variations over time periods from months to years.

Behaviour of volcanic pumice based thin walled composite filled columns under eccentric loading

  • Anwar Hossain, Khandaker M.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.1
    • /
    • pp.63-81
    • /
    • 2003
  • This paper describes experimental and theoretical investigations on the behaviour of thin walled composite (TWC) filled columns under eccentric loading conditions. Details of the experimental investigation including description of the test columns, testing arrangements, failure modes, strain characteristics, load-deformation responses and effects of various geometric and material parameters are presented. The current paper also introduces the use and effect of lightweight Volcanic Pumice Concrete (VPC) in TWC columns. Analytical models for the design of columns under eccentric loading conditions have been developed taking into consideration the effect of confined concrete. The performance of design equations is validated through experimental results. The proposed design models are found to produce better results compared with available design procedures and Code based formulations. A computer program is developed to generate the interaction diagrams based on the proposed design equations that can be used for design purposes.

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh Sik;Park Cha-Hong;Yoo Hai-Soo;Han Sang-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.145-150
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction (toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age, After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

Geological Structure and Depositional Environments in the Dok Island, East Sea (독도 주변해역의 지구조와 퇴적환경)

  • Huh, Sik;Park, Chan-Hong;Yoo, Hai-Soo;Han, Sang-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.131-135
    • /
    • 2005
  • A maximum of 3 km thickness of sediments were deposited above basement deformed by volcanic activities around the Dok Island. As the geological structure, the tension caused the basement-involved normal faults in the early stage of basin formation, whereas the sediment layers showed normal faults, volcanic domes and sills caused by volcanic activities. From the distribution of volcanics in order of age at the Ulleung Basin, volcanic activities were increased toward the northeastern direction(toward Dok Island). The study area is characterized by extensional crustal deformation before sediment deposition during the Early or Middle Miocene age. After the Late Miocene age, the basin was deformed by deep buried volcanics or subsidence of basin, in consequence, became complex geological structures.

  • PDF

A Study on Integrated Assessment of Baekdu Mountain Volcanic Aisaster risk Based on GIS (GIS기법을 이용한 백두산 화산재해 종합평가 연구)

  • Xiao-Jiao, Ni;Choi, Yun Soo;Ying, Nan
    • Spatial Information Research
    • /
    • v.22 no.4
    • /
    • pp.77-87
    • /
    • 2014
  • Recently there are many disasters caused by volcanic activities such as the eruptions in Tungurahua, Ecuador(2014) and $Eyjafjallaj\ddot{o}kull$, Iceland(2010). Therefore, it is required to prepare countermeasures for the disasters. This study analyzes the Baekdu Mountain area, where is the risky area because it is active volcano, based on the observed data and scientific methods in order to assess a risk, produce a hazard map and analyze a degree of risk caused by the volcano. Firstly, it is reviewed for the research about the Baekdu mountain volcanic eruption in 1215(${\pm}15$ years) done by Liu Ruoxin. And the factors causing volcanic disaster, environmental effects, and vulnerability of Baekdu Mountain are assessed by the dataset, which includes the earthquake monitoring data, the volcanic deformation monitoring data, the volcanic fluid geochemical monitoring data, and the socio-economic statistics data. A hazard, especially caused by a volcano, distribution map for the Baekdu Mountain Area is produced by using the assessment results, and the map is used to establish the disaster risk index system which has the four phases. The first and second phases are very high risky area when the Baekdu Mountain erupts, and the third and fourth phases are less dangerous area. The map shows that the center of mountain has the first phase and the farther area from the center has the lower phase. Also, the western of Baekdu Mountain is more vulnerable to get the risk than the eastern when the factors causing volcanic disasters are equally applied. It seems to be caused by the lower stability of the environment and the higher vulnerability.

Crustal Movement at Ol Doinyo Lengai based on GPS Measurements

  • Meshili, Valerie Ayubu;Kwon, Jay Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.5
    • /
    • pp.401-406
    • /
    • 2020
  • Continuously monitoring of Horizontal and Vertical movements in vulnerable areas due to earthquakes and volcanic activities is vital. These geohazard activities are the result of a slow deformation rate at the tectonic plate boundaries. The recent development of GPS (Global Positioning System) technology has made it possible to attain a millimeter level changes in the Earth's crust. This study used continuously observed GPS data at the flank of Ol Doinyo Lengai volcanic Mountain to determine crustal motion caused by impinging volcano from mantle convention. We analyzed 8 GPS observed from June 2016 to Dec 2019 using a well-documented Global Kalman Filter GAMIT/GLOBK software. The resulting velocity from GAMIT/GLOBK analysis was then used to compute the relative motion of our study area with respect to Nubia plate. Our analysis discovered a minor motion of less than 5mm/year in both horizontal and vertical components.

The high accurate monitoring technique of land deformation by using satellite image - PSInSAR -

  • Mizuno Toshimi;Kuzuoka Shigeki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.305-312
    • /
    • 2003
  • Remote sensing can provide invisible information in addition to acquire wide-view image data from space. Synthetic Aperture Radar (SAR) transmits microwave to the earth from a satellite and collects the reflected echo from the surface. Interferometric processing of SAR data can detect the subtle land deformation. The information of the surface movement by SAR is useful to monitor the volcanic activity, extended subsidence of urbanized area and the prediction of the earthquake caused by crustal deformation, and it complements the conventional levelling and GPS technique. PSInSAR (Permanent Scatterers Interferometric SAR) is one of interferometric techniques to be applied to practical projects in Japan. In this paper, the projects of land deformation monitoring are shown after the explanations of the PSInSAR principle. Tokai earthquake risk assessment is the first example. PSInSAR detects the subduction of crustal deformation of the adjacent area of new assumed epicenter region of the Tokai Earthquake. The extended subsidence of the urbanized area was implemented by using Japanese satellite data i.e. JERS that has so much data the surrounding of Japan as the archive. We examine the relationship between the geological structure and settlement at Nohbi basin including Nagoya city.

  • PDF

Monitoring Techniques for Active Volcanoes (활화산의 감시 기법에 대한 연구)

  • Yun, Sung-Hyo;Lee, Jeong-Hyun;Chang, Cheol-Woo
    • The Journal of the Petrological Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-138
    • /
    • 2014
  • There are various ways to monitor active volcanoes, such as the method of observing the activity of a volcano with the naked eye, the method of referring to the past eruptive history based on the historic records and the method of monitoring volcanoes by using observation equipment. The most basic method from the observation equipment-using methods to monitor volcanoes is seismic monitoring. In addition to this, the ways to monitor volcanoes are as follows: resonance observation which may be effective to remove artificial noises from the seismic activities that are recorded in the seismograph, ground deformation by using precision leveling, electronic distance measurement, tiltmeter, GPS, and InSAR observation method, volcanic gas monitoring, hydrologic and meteorological monitoring, and other geophysical monitoring methods. These monitoring methods can make volcanic activities effectively monitored, determine the behavior of magmas in magma chambers and help predict the future volcanic eruptions more accurately and early warning, thus, minimize and mitigate the damage of volcanic hazards.

Detecting Surface Changes Triggered by Recent Volcanic Activities at Kīlauea, Hawai'i, by using the SAR Interferometric Technique: Preliminary Report (SAR 간섭기법을 활용한 하와이 킬라우에아 화산의 2018 분화 활동 관측)

  • Jo, MinJeong;Osmanoglu, Batuhan;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1545-1553
    • /
    • 2018
  • Recent eruptive activity at Kīlauea Volcano started on at the end of April in 2018 showed rapid ground deflation between May and June in 2018. On summit area Halema'uma'u lava lake continued to drop at high speed and Kīlauea's summit continued to deflate. GPS receivers and electronic tiltmeters detected the surface deformation greater than 2 meters. We explored the time-series surface deformation at Kīlauea Volcano, focusing on the early stage of eruptive activity, using multi-temporal COSMO-SkyMed SAR imagery. The observed maximum deformation in line-of-sight (LOS) direction was about -1.5 meter, and it indicates approximately -1.9 meter in subsiding direction by applying incidence angle. The results showed that summit began to deflate just after the event started and most of deformation occurred between early May and the end of June. Moreover, we confirmed that summit's deflation rarely happened since July 2018, which means volcanic activity entered a stable stage. The best-fit magma source model based on time-series surface deformation demonstrated that magma chambers were lying at depths between 2-3 km, and it showed a deepening trend in time. Along with the change of source depth, the center of each magma model moved toward the southwest according to the time. These results have a potential risk of including bias coming from single track observation. Therefore, to complement the initial results, we need to generate precise magma source model based on three-dimensional measurements in further research.