• 제목/요약/키워드: Volatilization

검색결과 245건 처리시간 0.032초

NATURAL ATTENUATION OF HAZARDOUS INORGANIC COMPONENTS: GEOCHEMISTRY PROSPECTIVE (유해 무기질의 자연정화 : 지화학적 고찰)

  • Lee, Suk-Young;Lee, Chae-Young;Yun, Jun-Ki
    • Proceedings of the KSEEG Conference
    • /
    • 대한자원환경지질학회 2002년도 제18차 공동학술강연회 자연저감고 지질학 (대한 자원 환경지질학회)
    • /
    • pp.81-100
    • /
    • 2002
  • While most of regulatory communities in abroad recognize ' 'natural attenuation " to include degradation, dispersion, dilution, sorption (including precipitation and transformation), and volatilization as governing Processes, regulators prefer "degradation" because this mechanism destroys the contaminant of concern. Unfortunately, true degradation only applies to organic contaminants and short- lived radionuclides, and leaves most metals and long-lived radionuclides. The natural attenuation Processes may reduce the potential risk Posed by site contaminants in three ways: (i)contaminants could be converted to a less toxic form througy destructive processes such as biodegradation or abiotic transformations; (ii) potential exposure levels may be reduced by lowering concentrations (dilution and dispersion); and (iii) contaminant mobility and bioavailability may be reduced by sorption to geomedia. In this review, authors will focus will focul on "sorption" among the natural attenuation processes of hazardous inorganic contaminants including radionuclides. Note though that sorption and transformation processes of inorganic contaminants in the natural setting could be influenced by biotic activities but our discussion would limit only to geochemical reactions involved in the natural attenuation. All of the geochemical reactions have been studied in-depth by numerous researchers for many years to understand "retardation" process of contaminants in the geomedia. The most common approach for estimating retardation is the determination of distrubution coefficiendts ($K_{d}$) of contaminants using parametric or mechanistic models. As typocally used in fate and contaminant transport calculations such as predictive models of the natural attenuation, the $K_{d}$ is defined as the ratio of the contaminant concentration in the surrounding aqueous solution when the system is at equilibrium. Unfortunately, generic or default $K_{d}$ values can result in significant error when used to predict contaminant migration rate and to select a site remediation alternative. Thus, to input the best $K_{d}$ value in the contaminant transport model, it is essential that important geochemical processes affecting the transport should be identified and understood. Precipitation/dissolution and adsorption/desorption are considered the most important geochemical processes affecting the interaction of inorganic and radionuclide contaminants with geomedia at the near and far field, respectively. Most of contaminants to be discussed in this presentation are relatively immobile, i.e., have very high $K_{d}$ values under natural geochemical environments. Unfortunately, the obvious containment in a source area may not be good enough to qualify as monitored natural attenuation site unless owner demonstrate the efficacy if institutional controls that were put in place to protect potential receptors. In this view, natural attenuation as a remedial alternative for some of sites contaminated by hazardous-inorganic components is regulatory and public acceptance issues rather than scientific issue.

  • PDF

Hot Air Injection/Extraction Method for the Removal of Semi-Volatile Organic Contaminants from Soils (토양내 저휘발성 유류오염물 제거를 위한 고온공기 주입/추출기술 연구)

  • Gu Chung-Wan;Ko Seok-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • 제10권1호
    • /
    • pp.6-12
    • /
    • 2005
  • Contamination of soils and groundwater by leakage of petroleum compounds from underground storage tanks (USTs) has become great environmental issues. Conventional methods such as soil vapor extraction (SVE) used for the remediation of unsaturated soils contaminated with volatile organic compounds might not be applied for the removal of semi-volatile organic compounds such as diesel fuels and PCBs, which have low volatility and high hydrophobicity. The objective of this study is to develop a hot air injection method to remove semi-volatile compounds. Additionally, operation parameters such as temperature, air flow rate, and water content are evaluated. Experimental results show that diesel ranged organics (DROs) are removed in the order of volatility of organic compounds. As expected, removal efficiency of organics is highly dependent on the temperature. It is considered that more than $90\%$ of organic contaminants whose carbon numbers range between 17 and 22 can be removed efficiently by the hot air injection-extraction method (modified SVE) over the $100^{\circ}C$. It is also found that increased air flow rate resulted in high removal rate of contaminants. However, air flow rate over 40 cc/min is not effective for the operation aspects, due to mass transfer limitation on the volatilization rate of the contaminants. The effect of the water content on the decane removal is minimal, but some components show large dependence on the removal efficiency with increasing water content.

Effect of pH Adjustment by Adding Sulphuric Acid on Chemical Properties in Aerobic Liquefying Process of Co-Digestate of Swine Manure and Apple Pomace (돈분과 사과착즙박의 혼합 혐기소화액의 황산첨가 pH 조절이 호기성 액비화과정에서의 화학적 특성 변화)

  • Ryoo, Jong-Won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제28권3호
    • /
    • pp.5-14
    • /
    • 2020
  • This study aims to survey the effect of sulphuric acid (H2SO4) treatment for pH adjustment with 6.5 and 7.0 regarding ammonia volatilization on chemical content change in the aerobic liquefying process of co-digesate swine manure and apple pomace. The digestates of swine manure was aerated with 0.3 ㎥ air/㎥·min for 60 days. The untreated digestate showed the increased pH and decreased contents of electrical conductivity (EC) and total nitrogen (T-N). The untreated digestate had a high concentration of NH3 with 172.6 mg/L, but, ammonia (NH3) concentration of H2SO4-treated digestate was significantly lower than that of untreated digestate. The H2SO4-untreated digestate for retaining aeration showed a decreased concentration of 47.2% of ammonium nitrogen. While, the H2SO4-treated digestate had a high concentration of ammonium nitrogen compared to the untreated digestate. Also, the H2SO4 treatment affected to increase the contents of nitrogen and phosphoric acid content. Therefore, the pH adjustment with H2SO4 might be a useful method for the decreased ammonia concentration and nitrogen maintenance in the aerobic liquefying process of swine manure digesate.

Characteristics of Gaseous Dissolved Mercury and Total Mercury in Yangsuri Marsh of Korea (양수리 용늪의 용존 수은 및 총수은 농도 특성에 대한 연구)

  • Yang, Ji-Hye;Han, Young-Ji;Kim, Pyung-Rae;Park, Sang-Young;Seo, Yong-Seok;Lee, Jong-Hwan;Kim, Moon-Kyung;Yi, Seung-Muk;Cho, Kyung-Deok
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제34권12호
    • /
    • pp.801-809
    • /
    • 2012
  • Long-term measurement of total mercury (TM) and dissolved gaseous mercury (DGM) were performed in Yangsuri marsh. Average TM and DGM concentrations were $2.0{\pm}2.0$ ng/L and $15.0{\pm}2.8$ pg/L, respectively, indicating that only 2.6% of TM existed as the form of DGM in Yangsuri marsh. While TM did not show the seasonal variation a statistically high DGM concentration was observed in warm season, indicating that DGM was effectively produced by strong solar radiation and high water temperature. There was no relationship between TM and DGM concentrations in Yangsuri marsh, as observed in other studies. DGM in Yangsuri marsh was supersaturated for most of sampling period; therefore, one can conclude that $Hg^0$ in water surface can readily volatilize to the atmosphere.

Nitrogen Budgets for South Korea in 2005 (2005년 대한민국 질소 유입 및 유출 수지)

  • Yun, Dong-Min;Park, Sin-Hyung;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제30권1호
    • /
    • pp.97-105
    • /
    • 2008
  • Nitrogen budgets in Korea in 2005 were estimated using a mass balance approach. Major nitrogen fluxes were divided into three sections: cities, agricultural area, and forest. Nitrogen inputs were chemical and biological fixation, dry and wet deposition, imported food and feed, while crop uptake, volatilization, denitrification, leaching, runoff, and forest consumption were nitrogen outputs. Non-point source(NPS) pollution budgets were also estimated by mass balance approach. Annual total nitrogen inputs budgets were 1,442,254 ton$\cdot$yr$^{-1}$, and outputs were 814,415 ton$\cdot$yr$^{-1}$. Approximately 19.4% of nitrogen input leaked to river and seawater as NPS pollution. It contains nitrogen input 21 percent more than the previous research in 2002. Especially the change of government plans affect nitrogen budget. As a result, in the output field, the whole nitrogen amount due to landfill reduce from 20 percent to less than 1 percent.

New Liquid Crystal-Embedded PVdF-co-HFP-Based Polymer Electrolytes for Dye-Sensitized Solar Cell Applications

  • Vijayakumar, G.;Lee, Meyoung-Jin;Song, Myung-Kwan;Jin, Sung-Ho;Lee, Jae-Wook;Lee, Chan-Woo;Gal, Yeong-Soon;Shim, Hyo-Jin;Kang, Yong-Ku;Lee, Gi-Won;Kim, Kyung-Kon;Park, Nam-Gyu;Kim, Suhk-Mann
    • Macromolecular Research
    • /
    • 제17권12호
    • /
    • pp.963-968
    • /
    • 2009
  • Liquid crystal (LC; E7 and/or ML-0249)-embedded, poly(vinylidenefluoride-co-hexafluoropropylene) (PVdF-co-HFP)-based, polymer electrolytes were prepared for use in dye-sensitized solar cells (DSSCs). The electrolytes contained 1-methyl-3-propylimidazolium iodide (PMII), tetrabutylammonium iodide (TBAI), and iodine ($I_2$), which participate in the $I_3^-/I^-$ redox couple. The incorporation of photochemically stable PVdF-co-HFP in the DSSCs created a stable polymer electrolyte that resisted leakage and volatilization. DSSCs, with liquid crystal(LC)-embedded PVdF-co-HFP-based polymer electrolytes between the amphiphilic ruthenium dye N719 absorbed to the nanocrystalline $TiO_2$ photoanode and the Pt counter electrode, were fabricated. These DSSCs displayed enhanced redox couple reduction and reduced charge recombination in comparison to that fabricated from the conventional PVdF-co-HFP-based polymer electrolyte. The behavior of the polymer electrolyte was improved by the addition of optimized amounts of plasticizers, such as ethylene carbonate (EC) and propylene carbonate (PC). The significantly increased short-circuit current density ($J_{sc}$, $14.60\;mA/cm^2$) and open-circuit voltage ($V_{oc}$, 0.68 V) of these DSSCs led to a high power conversion efficiency (PCE) of 6.42% and a fill factor of 0.65 under a standard light intensity of $100\;mW/cm^2$ irradiation of AM 1.5 sunlight. A DSSC fabricated by using E7-embedded PVdF-co-HFP-based polymer electrolyte exhibited a maximum incident photon-to-current conversion efficiency (IPCE) of 50%.

Nitrogen Isotope Compositions of Synthetic Fertilizer, Raw Livestock Manure Slurry, and Composted Livestock Manure (화학비료, 가축분뇨 및 퇴비의 질소동위원소비)

  • Lim, Sang-Sun;Lee, Sang-Mo;Lee, Seung-Heon;Choi, Woo-Jung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제43권4호
    • /
    • pp.453-457
    • /
    • 2010
  • To investigate the difference in N isotope ratio ($^{15}N/^{14}N$, expressed as ${\delta}^{15}N$) among N sources (synthetic fertilizer, livestock manure, and manure compost), eight synthetic fertilizer, four livestock manure, and thirty-seven compost samples were collected and analyzed for ${\delta}^{15}N$. The mean ${\delta}^{15}N$ values of N sources were $-1.5{\pm}0.5$‰ (range: -3.9 to +0.5‰) for synthetic fertilizer, $+6.3{\pm}0.4$‰ (+5.3 to +7.2‰) for manure, and $+16.0{\pm}0.4$‰ (+9.3 to +20.9‰) for compost. The lower ${\delta}^{15}N$ of synthetic fertilizer was attributed to its N source, atmospheric $N_2$ of which ${\delta}^{15}N$ is 0‰ Meanwhile, more $^{15}N$-enrichment of compost than manure was assumed to be resulted from N isotopic fractionation (faster loss of $^{14}N$-bearing compound than $^{15}N$) associated with N loss particularly via $NH_3$ volatilization during composting. Therefore, our study shows that ${\delta}^{15}N$ values could successfully serve in discriminating two major N sources (synthetic fertilizer and compost) in agricultural system.

Effects of Initial Concentration and Nutrients in Treatment of petroleum Hydrocarbon Contaminated Soils using a Slurry-Phase Bioreactor (슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 초기농도 및 영양소의 영향)

  • 김수철;남궁완;박대원
    • Journal of Korea Soil Environment Society
    • /
    • 제3권3호
    • /
    • pp.45-53
    • /
    • 1998
  • The purpose of this study was to evaluate effects of initial concentration and nutrients in treatment of petroleum hydrocarbon contaminated soils. The reactor used in this study was slurry-phase bioreactor of in-vessel type. Performance results on treatment of diesel fuel contaminated soils and micorbial growth were generated at the bench-scale level. The fate of TPH(Total Petroleum Hydrocarbon) and the microbial growth were evaluated in combination with biodegradation rate. Effect of initial loading levels of 50,000 and 100,000mg TPH/kg soil was studied. Performance results with two reactors were showed at the total TPH removal rate of 90.5% and 90.8%, respectively. However, the reactor with the initial concentration of 50,000mg TPH/kg soil showed higher biological TPH removal efficiency except for removal by volatilization than the other Although the different amount of nutrients was applied in two reactors, there was no remarkable difference in microbial growth rate. However, considerable factor in this results was that applied different initial concentration to two reactors. Although initial concentration was two times higher than it applied to the reactor without addition of nutrients, in total and biological TPH removal rate the reactor with addition of nutrients showed a higher than the other.

  • PDF

FISSION PRODUCT AND ACTINIDE RELEASE FROM THE DEBRIS BED TEST PHEBUS FPT4: SYNTHESIS OF THE POST TEST ANALYSES AND OF THE REVAPORISATION TESTING OF THE PLENUM SAMPLES

  • Bottomley P.D.W.;Gregoire A.C.;Carbol P.;Glatz J.P.;Knoche D.;Papaioannou D.;Solatie D.;Van Winckel S.;Gregoire G.;Jacquemain D.
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.163-174
    • /
    • 2006
  • The $Ph{\acute{e}}bus$ FP project is an international reactor safety project. Its main objective is to study the release, transport and retention of fission products in a severe accident of a light water reactor (LWR). The FPT4 test was performed with a fuel debris bed geometry, to look at late phase core degradation and the releases of low volatile fission products and actinides. Post Test Analyses results indicate that releases of noble gases (Xe, Kr) and high-volatile fission products (Cs, I) were nearly complete and comparable to those obtained during $Ph{\acute{e}}bus$ tests performed with a fuel bundle geometry (FPT1, FPT2). Volatile fission products such as Mo, Te, Rb, Sb were released significantly as in previous tests. Ba integral release was greater than that observed during FPT1. Release of Ru was comparable to that observed during FPT1 and FPT2. As in other $Ph{\acute{e}}bus$ tests, the Ru distribution suggests Ru volatilization followed by fast redeposition in the fuelled section. The similar release fraction for all lanthanides and fuel elements suggests the released fuel particles deposited onto the plenum surfaces. A blockage by molten material induced a steam by-pass which may explain some of the low releases. The revaporisation testing under different atmospheres (pure steam, $H_2/N_2$ and steam /$H_2$) and up to $1000^{\circ}C$ was performed on samples from the first upper plenum. These showed high releases of Cs for all the atmospheres tested. However, different kinetics of revaporisation were observed depending on the gas composition and temperature. Besides Cs, significant revaporisations of other elements were observed: e.g. Ag under reducing conditions, Cd and Sn in steam-containing atmospheres. Revaporisation of small amounts of fuel was also observed in pure steam atmosphere.

Removal of NAPL from Aquifer Using Surfactant-enhanced Air Sparging at Elevated Temperature (승온조건의 SEAS(surfactant-enhanced air sparging) 기술을 이용한 대수층 NAPL(n-decane)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • 제14권6호
    • /
    • pp.87-94
    • /
    • 2009
  • Surfactant-enhanced air sparging (SEAS) was developed to suppress the surface tension of groundwater prior to air sparging resulting in higher air saturation and larger contact area between NAPL and gas during air sparging. Larger contacting interface between NAPL and gas means faster mass transfer of contaminants from NAPL to gas phase. This new technique, however, is limited to relatively volatile contaminants because vaporization is its basic mechanism of mass transfer. In this study, SEAS was tested at an elevated temperature for a semi-volatile n-decane, which is expected not to be a good candidate of SEAS application due to its low vapor pressure at ambient temperature. Three sparging experiments were conducted using 1-dimensional column (5 cm id, 80 cm length) packed with sand; (1) ambient temperature ($23^{\circ}C$), column saturated with distilled water, (2) SEAS at ambient temperature ($23^{\circ}C$), for n-decane contaminated sand, (3) SEAS at elevated temperature ($73^{\circ}C$), for n-decane contaminated sand. Higher air saturation was achieved by SEAS compared to that by air sparging without surfactant application. The n-decane removal efficiency of SEAS at elevated temperature was significantly higher(> 10 times) than that of ambient SEAS. The n-decane concentrations in the gas effluent from column during SEAS at $73^{\circ}C$ are found to be 10 times of those measured at ambient temperature. Thus, SEAS technique can be applied for removal of semi-volatile contaminants provided that an appropriate technique for elevating aquifer temperature is available.