• Title/Summary/Keyword: Volatility Index

Search Result 190, Processing Time 0.022 seconds

KOSPI 200 Futures Trading Activities and Stock Market Volatility (KOSPI 200 선물의 거래활동과 현물 주식시장의 변동성)

  • Kim, Min-Ho;Nielsen, James;Oh, Hyun-Tak
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.235-261
    • /
    • 2003
  • We examine the relationship between the trading activities of Korea Stock Price Index (KOSPI) 200 futures contract and its underlying stock market volatility for about six years from May 1996 when the futures contract was introduced. The trading activities of the futures contracts are proxied by the volume and open interest, which are divided into expected and unexpected portions by using the previous data. The daily, intradilay, and overnight cash volatility is estimated by the GJR-GARCH model. We find a positive contemporaneous relationship between the intradaily stock market volatility and the unexpected futures volume while the relationship between the volatility and expected futures volume is weakly negative or non-existent. We also find that the unexpected futures volume strongly causes intradaily cash volatility. On the other hand, the overnight cash volatility causes the unexpected futures volume. The impulse responses between these variables are all positive. The result implies that during a trading time futures trading tends to increase the cash volatility while the unexpected overnight changes in cash volatility tends to increase the futures trading activities. We, however, find no association between the cash volatility and futures maturities.

  • PDF

System Dynamics Approach for the Forecasting KOSPI (시스템다이내믹스를 활용한 종합 주가지수 예측 모델 연구)

  • Cho, Kang-Rae;Jeong, Kwan-Yong
    • Korean System Dynamics Review
    • /
    • v.8 no.2
    • /
    • pp.175-190
    • /
    • 2007
  • Stock market volatility largely depends on firms' value and growth opportunities. However, with the globalization of world economy, the effect of the synchronization in major countries is gaining its importance. Also, domestically, the business cycle and cash market of the country are additional factors needed to be considered. The main purpose of this research is to attest the application and usefulness of System Dynamics as a general stock market forecasting tool. Throughout this research, System Dynamics suggests a conceptual model for forecasting a KOSPI(Korea Composite Stock Price Index), taking the factors of the composite stock price indexes in traditional researches. In conclusion of this research, System Dynamics was proved to bean appropriate model for forecasting the volatility and direction of a stock market as a whole. With its timely adaptability, System Dynamic overcomes the limit of traditional statistic models.

  • PDF

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

The Cross-Sectional Dispersion of Housing and Business Cycle (경기변동과 주택형태별 수익률에 관한 소고(小考))

  • Kim, Jong-Kwon
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.04a
    • /
    • pp.305-308
    • /
    • 2009
  • According to the returns of Housing and business cycle over the period 1992 to 2007, it is a measure of the total volatility faced by investors in Housing properties. First, it isn't a distinct difference from business cycle contrary to U.S. Second, the rise of purchase price in total apartments moves up the consumer price index. According to the cross-sectional dispersion of returns and growth in net operating income (NOI) of apartments, industrial, retail and office properties using panel data for U.S. metropolitan areas over the period 1986 to 2002, it is a measure of the total volatility faced by investors in commercial real estate. To the extent that most of that volatility is difficult to diversify, cross-sectional dispersion may be an appropriate measure of risk.

  • PDF

Can Agricultural Aid and Remittances Alleviate Macroeconomic Volatility in Response to Climate Change Shocks? (아프리카 국가들의 경제성장률 변동성에 기후변화, 송금 및 농업 원조가 미치는 영향 분석)

  • You, Soobin;Kim, Taeyoon
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.471-494
    • /
    • 2016
  • This study investigates the effect of remittance and agricultural aid inflows on GDP growth rate volatility in response to climate change shocks in twenty-eight African countries by using system generalized method of moments from 1996 to 2013 with three years grouped data. The climate change shocks are indicated by four variables; natural disasters, rainfall variability, fluctuation in temperature and the weighted anomaly standardized precipitation (WASP) index. Consequently, natural disasters and temperature variability have a significant effect on GDP volatility, while rainfall variability and WASP index have no adverse consequence on stabilization of the economy. On the other hand, in general, remittances and agricultural aid are helpful to stabilize the economy and especially remittances inflows can play a crucial role as insurance when natural disasters occur.

Buy-Sell Strategy with Mean Trend and Volatility Indexes of Normalized Stock Price (정규화된 주식가격의 평균추세-변동성 지표를 이용한 매매전략 -KOSPI200 을 중심으로-)

  • Yoo, Seong-Mo;Kim, Dong-Hyun
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.277-283
    • /
    • 2005
  • In general, stock prices do not follow normal distributions and mean trend indexes, volatility indexes, and volume indicators relating to these non-normal stock price are widely used as buy-sell strategies. These general buy-sell strategies are rather intuitive than statistical reasoning. The non-normality problem can be solved by normalizing process and statistical buy-sell strategy can be obtained by using mean trend and volatility indexes together with normalized stock prices. In this paper, buy-sell strategy based on mean trend and volatility index with normalized stock prices are proposed and applied to KOSPI200 data to see the feasibility of the proposed buy-sell strategy.

  • PDF

Forecasting Power of Range Volatility According to Different Estimating Period (한국주식시장에서 범위변동성의 기간별 예측력에 관한 연구)

  • Park, Jong-Hae
    • Management & Information Systems Review
    • /
    • v.30 no.2
    • /
    • pp.237-255
    • /
    • 2011
  • This empirical study is focused on practical application of Range-Based Volatility which is estimated by opening, high, low, closing price of overall asset. Especially proper forecasting period is what I want to know. There is four useful Range-Based Volatility(RV) such as Parkinson(1980; PK), Garman and Klass(1980; GK) Rogers and Satchell(1991; RS), Yang and Zhang(2008; YZ). So, four RV of KOPSI 200 index during 2000.5.22-2009.9.18 was used for empirical test. The emprirical result as follows. First, the best RV which shows the best forecasting performance is PK volatility among PK, GK, RS, YZ volatility. According to estimating period forcasting performance of RV shows delicate difference. PK has better performance in the period with financial crisis of sub-prime mortgage loan. if not, RS is better. Second, almost result shows better performance on forecasting volatility without sub-prime mortgage loan period. so we can say that forecasting performance is lower when historical volatiltiy is comparatively high. Finally, I find that longer estimating period in AR(1) and MA(1) model can reduce forecasting error. More interesting point is that the result shows rapid decrease form 60 days to 90 days and there is no more after 90 days. So, if we forecast the volatility using Range-Based volaility it is better to estimate with 90 trading period or over 90 days.

  • PDF

A Test on the Volatility Feedback Hypothesis in the Emerging Stock Market (신흥주식시장에서의 변동성반응가설 검정)

  • Kim, Byoung-Joon
    • The Korean Journal of Financial Management
    • /
    • v.26 no.4
    • /
    • pp.191-234
    • /
    • 2009
  • This study examined on the volatility feedback hypothesis through the use of threshold GARCH-in-Mean (GJR-GARCH-M) model developed by Glosten, Jaganathan, and Runkle (1993) in the stock markets of 14 emerging countries during the period of January, 1996 to May, 2009. On this study, I found successful evidences which can support the volatility feedback hypothesis through the following three estimation procedures. First, I found relatively strong positive relationship between the expected market risk premiums and their conditional standard deviations from the GARCH-M model in the basis of daily return on each representative stock market index, which is appropriate to investors' risk-averse preferences. Second, I can also identify the significant asymmetric time-varying volatility originated from the investors' differentiated reactions toward the unexpected market shocks by applying the GJR-GARCH-M model and further find the lasting positive risk aversion coefficient estimators. Third, I derived the negative signs of the regression coefficient of unpredicted volatility on the stock market return by re-applying the GJR-GARCH-M model after I controlled the positive effect of predicted volatility through including the conditional standard deviations from the previous GARCH-M model estimation as an independent explanatory variable in the re-applied new GJR-GARCH-M model. With these consecutive results, the volatility feedback effect was successfully tested to be effective also in the various emerging stock markets, although the leverage hypothesis turned out to be insufficient to be applied to another source of explaining the negative relationship between the unexpected volatility and the ex-post stock market return in the emerging countries in general.

  • PDF

Using genetic algorithms to develop volatility index-assisted hierarchical portfolio optimization (변동성 지수기반 유전자 알고리즘을 활용한 계층구조 포트폴리오 최적화에 관한 연구)

  • Byun, Hyun-Woo;Song, Chi-Woo;Han, Sung-Kwon;Lee, Tae-Kyu;Oh, Kyong-Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.6
    • /
    • pp.1049-1060
    • /
    • 2009
  • The expansion of volatility in Korean Stock Market made it more difficult for the individual to invest directly and increased the weight of indirect investment through a fund. The purpose of this study is to construct the EIF(enhanced index fund) model achieves an excessive return among several types of fund. For this purpose, this paper propose portfolio optimization model to manage an index fund by using GA(genetic algorithm), and apply the trading amount and the closing price of standard index to earn an excessive return add to index fund return. The result of the empirical analysis of this study suggested that the proposed model is well represented the trend of KOSPI 200 and the new investment strategies using this can make higher returns than Buy-and-Hold strategy by an index fund, if an appropriate number of stocks included.

  • PDF

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.