• Title/Summary/Keyword: Volatile terpene

Search Result 67, Processing Time 0.03 seconds

Changes of Volatile Component Contents in a Red Ginseng Tail Root by Puffing (팽화처리에 의한 홍미삼의 휘발성 성분의 변화)

  • Han, Chan-Kyu;Choi, Sang-Yoon;Kim, Sung-Soo;Sim, Gun-Sub;Shin, Dong-Bin
    • Journal of Ginseng Research
    • /
    • v.32 no.4
    • /
    • pp.311-314
    • /
    • 2008
  • This study evaluated changes in concentrations of volatile compounds contained in red ginseng tail roots through puffing treatment. The results showed that 59 out of 63 volatile compounds were detected from the puffing treated roots. While most terpene and furan compounds seem to be increased by puffing treatment, most alcoholic, aldehyde and acid compounds seem to be decreased, and terpene compounds content accounted for 70% of the 63 volatile components in the puffed red ginseng tail roots.

An Identification of Volatile Terpenes in Allelopathic Weeds (Allelopathy 작용성(作用性)을 나타내는 잡초(雜草)중의 휘발성(揮發性) Terpene류(類)의 동정(同定))

  • Chun, J.C.;Han, K.W.
    • Korean Journal of Weed Science
    • /
    • v.9 no.2
    • /
    • pp.149-153
    • /
    • 1989
  • Volatile terpenes responsible for allelopathic activity in four weed species were identified using gas chromatography (GC) and GC-mass spectrometry. Artemisia asiatica Nakai contained 26 volatile terpenes, consisting of 16 monoterpenes and 10 sesquiterpenes, whereas there were only four terpenes in Trifolium repens L. and three terpenes each in Portulaca oleracea L. and Capsella bursa-pastoris (L,) Medik. Suspected allelochemics were ${\alpha}$-phellandrene, 1,8-cineole, limonene, ${\alpha}$-pinene, borneol, selinene, and caryophyllene in A. asiatica, ${\alpha}$-pinene and ${\beta}$-caryophyllene in T. repens, and ${\alpha}$-pinene in C. bursapastoris. No these compounds were found in P. oleracea.

  • PDF

Analysis of Volatile Compounds in Elsholtzia splendens by Solid Phase Microextraction (SPME에 의한 꽃향유의 휘발성 향기성분 분석)

  • 정미숙;이미순
    • Korean journal of food and cookery science
    • /
    • v.19 no.1
    • /
    • pp.79-82
    • /
    • 2003
  • Volatile compounds in Elsholtzia splendens were extracted by solid phase microextraction (SPME). Two kinds of SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Elsholtzia splendens. Identification of volatile compounds was based on the linear retention indices (RI) and the comparison of their mass spectra with those of on-computer library. Thirty compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 1 aldehyde, 5 alcohols, 3 hydrocarbons, 17 terpene hydrocarbons, 3 ketones and 1 miscellaneous. And 5 alcohols, 3 hydrocarbons, 18 terpene hydrocarbons, 3 ketones and 2 miscellaneouses were identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was similar to that of CAR/PDMS fiber in Elsholtzia splendens. The major volatile compounds were naginataketone and elsholtziaketone in Elsholtzia splendens.

Volatile Flavor Components of Codonopsis lanceolata Traut. (Benth. et Hook.) (더덕뿌리중의 휘발성 향기성분)

  • Park, Joon-Yung;Kim, Young-Hoi;Kim, Kun-Soo;Kwag, Jae-Jin
    • Applied Biological Chemistry
    • /
    • v.32 no.4
    • /
    • pp.338-343
    • /
    • 1989
  • The volatile oil of the root of Codonopsis lanceolata Traut. (Benth. et Hook.) was isolated by steam distillation and extraction method and fractionated by silica gel column chromatography. The total volatile oil and each fractions were analyzed by GG, GC-MS and retention indices matching. A total of 50 components were identified in the volatile oil including 16 terpene and terpene alcohols, 13 hydrocarbons, 5 alcohols, 6 aldehyde and ketones, 6 acids, 2 esters and 2 miscellaneous components. The major components were n-hexanal (7.3% of total volatile oil), trans-2-hexenal (24.9%), n-hexanol (19.8%), cis-3-hexen-1-ol (5.6%) and trans-2-hexen-1-ol (29.4%).

  • PDF

Volatile Components of Kumquat(Fortunella margarita) (금귤의 휘발성 향기성분)

  • Kwag, Jae-Jin;Kim, Do-Yeon;Lee, Keun-Hoi
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.423-427
    • /
    • 1992
  • The volatile components were extracted from kumquat(Fortunella margarita) by simultaneous steam distillation-extraction method and fractionated on silica gel column. The total volatile oil was eluted off first by n-pentane and eluted again by diethyl ether. The total volatile oil and diethyl ether fraction were analyzed by GC and GC-MS. In the total volatile oil, 10 components were identified, of which major ones were limonene(96.5%, of total volatile oil), ${\beta}-pinene$(1.93%) and ${\alpha}-terpineol$(0.42%) and then the characteristic aroma of kumquat appeared to be due to limonene. On the other hand diethyl ether fraction, from which 46 components were identified, contained 9 alcohols, 22 terpenes and terpene alcohols, 7 aldehydes and ketones, 7 esters and 1 miscellaneous components. The major components were ${\alpha}-terpineol$(31.98% of diethyl ether fraction), ${\beta}-terpineol$(7.37%), geranyl acetate(9.69%) and p-menthadien-9-ol(4.12%).

  • PDF

Volatile Flavor Components of Angelica gigas Nakai by the Storage Conditions (저장조건에 따른 당귀의 정유성분 변화)

  • Choi, Sung-Hee;Kim, Hye-Jung
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.513-518
    • /
    • 2000
  • Volatile flavor components of Angelica gigas Nakai affected by different storage time and temperature were investigated. The aroma compounds was extracted by a simultaneous distillation and extraction method using a Likens and Nickerson's apparatus. The concentrated extract was analyzed and identified by GC and GC-MS equipped polar and nonpolar column. The yields of volatile concentrates of Angelica gigas Nakai by low temperature storage were larger than those by room temperature storage. The GC patterns of the flavor components of both resembled but the peak area of each flavor compounds was little different. Main volatile flavor components of Angelica gigas Nakai by using polar column were ${\alpha}-pinene$, ${\beta}-pinene$, terpineol, farnesol, cadinene, guaiol, isolongifolene and eudesmol etc. Main volatile flavor components of Angelica gigas Nakai by using nonpolar column were camphene, ${\beta}-pinene$, elemol, eudesmol etc.

  • PDF

Analysis of Volatile Compounds in Perilla frutescens var. acuta by Solid Phase Microextraction (SPME에 의한 소엽의 향기성분 분석)

  • Chung, Mi-Sook;Lee, Mie-Soon
    • Journal of the Korean Society of Food Culture
    • /
    • v.18 no.1
    • /
    • pp.69-74
    • /
    • 2003
  • This study was conducted to find the appropriate fiber for extraction of volatile compounds from Perilla frutescens var. acuta. by solid phase microextraction (SPME). Two SPME fiber, carboxen/polydimethylsiloxane (CAR/PDMS) and polydimethylsiloxane (PDMS) were used to determine the selectivity of the fibers to the different flavor compounds present in the Perilla frutescens var. acuta. Thirty-nine compounds were identified in the volatile compounds extracted by CAR/PDMS fiber, including 6 aldehyde, 1 alcohol, 10 hydrocarbons, 17 terpene hydrocarbons, 2 ketones and 3 benzenes. In PDMS fiber, 3 aldehydes, 2 alcohols, 13 terpene hydrocarbons and 2 miscellaneouses were identified. Perillaldehyde was found to be major volatile flavor component of fresh Perilla frutescens var. acuta. Perillaldehyde and terpene hydrocarbons were more identified in PDMS fiber. These results suggested that the selectivity of PDMS fiber was better than that of CAR/PDMS fiber in Perilla frutescens var. acuta..

Comparisons of Volatile Compounds Extracted from Pinus densiflora by Headspace Analysis (Headspace법에 의한 솔향의 분석)

  • 이미정;정은주;이신조;조지은;이양봉;조현종;윤정로
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.1
    • /
    • pp.26-31
    • /
    • 2002
  • Volatile compounds from three parts of needles, sprouts and twigs in Pinus densiflora were extracted by solid phase microextraction (SPME) and dynamic headspace analysis (DHA). separated by gas chromatography, and identified by using mass selective detecter and Kovat's retention index. The amounts of monoterpenes isolated by SPME and DHA were 66.7% and 14.3% in needles, 90.6% and 0.7% in sprouts, and 90.6% and 1.2% in twings, respectively. The amounts of sesquiterpenes detected only by SPME were 25.8% in needles, 4.4% in twings and 1.5% in sprouts. And the amounts of oxygenated terpenes isolated by SPME and DHA were 4.7% and 79.0% in sprouts, 3.7% and 70.4% in twigs, and 1.0% and 50.7% in needles, respectively. The kinds of volatile compounds isolated by SPME were similar to those by solvent extraction, but the number of compounds identified to hate a boiling point below 5$0^{\circ}C$ by UHA was larger than that of SPME.

The Effects of Stamping and Roasting Treatments on Change of Volatile Flavor Components in Aged Curry Powder (미분쇄 및 배전처리가 숙성카레분의 휘발성 향기성분의 변화에 미치는 영향)

  • Park, Wan-Kyu;Yoon, Jong-Hoon;Kim, Jin-Ho;Jung, Seung-Hyeon;Son, Se-Hyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.426-429
    • /
    • 1993
  • This study was conducted to determine the effects of stamping and roasting treatment on change of volatile flavor components in curry powder aged for 6th month at $37^{\circ}C$. Volatile flavor components were collected by simultaneous distillation extraction method. Essential oils were analyzed by gas chromatography(GC) and combined gas chromatography-mass spectrometry(GC-MS). Aged curry powder contained large amounts of terpene hydrocarbones, terpene alchols and aromatic ether compounds. By stamping and roasting treatment, the peak area generally increased until 15min. at $70^{\circ}C$, whereas, that of peak decreased after 20 min. at $80^{\circ}C$, respectably.

  • PDF

Volatile Components of Cornsilk(Zea mays L.) (옥수수 수염의 휘발성 성분)

  • 이재곤
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.4
    • /
    • pp.375-379
    • /
    • 1999
  • Volatile components of Cornsilk(Zea mays L.) were isolated by purge and trap headspace method and were analyzed by GC and GC/MSD. A total of 44 components were identified in the cornsilk volatile coponents including 9 alcohols 7 aldehydes and ketones 14 terpenes and terpene alcohols 3 pyrazines 5 hydrocarbons and 6 miscellaneous components. The major components were 2-propanol(8.08%) pen-tanol(1.82%) hexanol(2.86%) hexanal(3.68%) heptanal(7.40%) nonanal(7.93%) decanal (2.04%) $\alpha$-copaene(2.20%) limonene(1.68%) $\alpha$-selinene(1.03%) $\beta$-selinene(1.03%)

  • PDF