• Title/Summary/Keyword: Volatile solid

Search Result 396, Processing Time 0.023 seconds

Effects of Volatile Solid Concentration and Mixing Ratio on Hydrogen Production by Co-Digesting Molasses Wastewater and Sewage Sludge

  • Lee, Jung-Yeol;Wee, Daehyun;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.11
    • /
    • pp.1542-1550
    • /
    • 2014
  • Co-digesting molasses wastewater and sewage sludge was evaluated for hydrogen production by response surface methodology (RSM). Batch experiments in accordance with various dilution ratios (40- to 5-fold) and waste mixing composition ratios (100:0, 80:20, 60:40, 40:60, 20:80, and 0:100, on a volume basis) were conducted. Volatile solid (VS) concentration strongly affected the hydrogen production rate and yield compared with the waste mixing ratio. The specific hydrogen production rate was predicted to be optimal when the VS concentration ranged from 10 to 12 g/l at all the mixing ratios of molasses wastewater and sewage sludge. A hydrogen yield of over 50 ml $H_2/gVS_{removed}$ was obtained from mixed waste of 10% sewage sludge and 10 g/l VS (about 10-fold dilution ratio). The optimal chemical oxygen demand/total nitrogen ratio for co-digesting molasses wastewater and sewage sludge was between 250 and 300 with a hydrogen yield above 20 ml $H_2/gVS_{removed}$.

Effect of Organic Content on Anaerobic Biodegradability by Agricultural Waste Biomass

  • Shin, Kook-Sik;Yoon, Young-Man;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • Recently interest on production of biogas from biomass resources has increased because of climate change in worldwide. In this study, anaerobic digestion efficiency of 17 different types of agricultural waste was evaluated using biochemical methane production potential estimated from the International biochemical methane potential standard method (Germany VDI4630). As a result, theoretical biochemical methane potential ($B_{th}$) of agricultural waste biomass ranged from 0.266 to $0.488Nm^3kg^{-1}$-Volatile Solid $(VS)_{added}$. Ultimate biochemical methane potential ($B_u$) of agricultural waste biomass ranged between 0.176 and $0.417Nm^3kg^{-1}-VS_{added}$. The agricultural waste biomass anaerobic biodegradability with $B_u/B_{th}$ and VDI4630 determined by VS contents was 36.0~95.9% and 30.8~91.1%, respectively. Ultimate methane potential and anaerobic biodegradability given by the VS term showed more reasonable results.

Bioactive Components and Volatile Compounds According to Illite Addition in Saururus chinensis Baill Cultivation (일라이트 시용량에 따른 삼백초 잎의 유효성분 및 향기성분 함량 비교)

  • Lee, Ka Soon;Kim, Gwan Hou;Seong, Bong Jae;Kim, Sun Ick;Han, Seung Ho;Lee, Sox Su;Lee, Min;Yoo, Chan Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.3
    • /
    • pp.188-195
    • /
    • 2014
  • This study was carried to investigate the effect of illite addition on the growth, bioactive components and volatile compounds of leaf on Saururus chinensis Baill cultivation in greenhouse. Illite addition on Saururus chinensis Baill cultivation resulted no significant effects on the aerial part. However, the root part was highest in 5% illite addition group. Crude oil and ash amount increased as illite additives was increased. Ca of inorganics and free sugars contents were highest in 5% and 20% illite addition, respectively. Hyperoside and isoquercetin of available component on leaf were highest in 5% illite addition group, 4.02mg/g and 4.31mg/g, respectively. The volatile compounds in Saururus chinensis Baill leaf cultured with illite addition amounts were isolated by solid-phase microextraction fiber (polydimethysiloxane $65{\mu}m$) and identifed by gas chromatogtaphy mass spectrometry. As the results, the 22 volatile compounds were identified from in Saururus chinensis Baill leaf and major volatile compounds were the ${\alpha}$-cadinol (18.50%), myristicin (16.46%), methyl-9-methyl-tetradecanoate (10.22%), and ${\gamma}$-muurolene (9.75%). Especially, the content of ${\alpha}$-cadinol was highest in 5% illite addition group and ${\gamma}$-muurolene on overall illite addition group was lower than no addition group.

Separation and recovery of semi-volatile substances of Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus by reduced pressure collections and GC-MS

  • Lee, In-Ho;Byun, Chang Kyu;Eum, Chul Hun;Kim, Taewook;Lee, Sam-Keun
    • Analytical Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.11-22
    • /
    • 2020
  • When extracting semi-volatile components of herbal medicines using hot water vapor, some substances may react with water vapor or oxygen, and some volatile substances may be lost, when using an organic solvent extraction method has the disadvantage that it may contain a non-volatile material and residual organic solvent. In addition, it is inefficient to separate semi-volatile substances from herbal medicines into each single component and conduct biological activity research for each component to determine the effective ingredient, and some components may be lost in the separation process. In this study, semi-volatile substances evaporated under two pressure-reduced conditions in Chinese herbal medicines such as Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were separated by cooling with liquid nitrogen. Those were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the components, and this method may be used to study biological activities at the cellular level. The substances separated under reduced pressure, essential oil obtained by simultaneous distillation extraction (SDE) method and substances by using solid phase micro-extraction (SPME) from Cnidii Rhizoma, Aucklandiae Radix and Amomum Fructus were analyzed by GC-MS. In the case of Cnidii Rhizoma and Aucklandiae Radix, there were some differences among the essential oil components obtained by SDE and those identified by low temperature capture (CT) and SPME method, these were believed to be produced by some volatiles reacting with water or oxygen at the boiling point temperature of water.

Effect of the Calpain System on Volatile Flavor Compounds in the Beef Longissimus lumborum Muscle

  • Yang, Jieun;Dashdorj, Dashmaa;Hwang, Inho
    • Food Science of Animal Resources
    • /
    • v.38 no.3
    • /
    • pp.515-529
    • /
    • 2018
  • The present study was designed to investigate the effects of calpain system on the formation of volatile flavor compounds in Hanwoo beef. In the first experiment (exp.1), Longissimus lumborum (LL) muscle samples were injected with solutions containing 50 mM $CaCl_2$ or 50 mM $ZnCl_2$ and 154 mM NaCl respectively, and aged for 7 d at $4^{\circ}C$. In the second experiment (exp.2), the ground LL muscle was incubated with the aforementioned solutions containing cathepsin inhibitor. The injection with $CaCl_2$ solution greatly elevated the calpain activity and concomitantly, significantly decreased the Warner-Bratzler shear force (p<0.05). The pH, meat color and cooking loss did not differ (p>0.05) between the treatment groups. A total of 51 volatile compounds were identified using the solid phase microextraction with gas chromatography (SPME-GC). Results on volatile analyses from the both experiments showed that the injection with calcium ions led to significant increase (p<0.05) concentrations of pyrazines and sulfuric compounds. These results coincide with a higher rate of protein degradation due to the $CaCl_2$ injection as compared to the control group. Significantly (p<0.05) higher levels of lipid oxidation derived-aldehydes were found in the samples with $ZnCl_2$. The exp.1 showed that cathepsin inhibitors had no effect on the formation of volatile flavor components after 7 d of aging. These results imply that the proteolytic activity of the calpain system is associated with generation of volatile compounds of chiller-aged beef, while the role of cathepsins is likely very limited.

Solvent Extracted Volatile Components of Mushroom Mycelia Cultivated with Citrus Juice Processing Wastes (감귤 주스 착즙박을 이용하여 재배된 버섯균사체의 용매추출에 의한 휘발성 성분)

  • Lee, Chang-Hwan;Yang, Min-Ho;Park, Seung-Rim;Kang, Young-Joo
    • Food Science and Preservation
    • /
    • v.14 no.4
    • /
    • pp.351-355
    • /
    • 2007
  • Solvent-extracted volatile components from dry powder prepared from Citrus unshiu products such as immature Citrus unshiu (PCU), mature Citrus unshiu (MCU), Citrus unshiu peel (CUP), and citrus juice processing wastes (CJPW), were examined. Also, solvent-extracted volatile components from mushroom mycelia of Pycnoporus coccineus (PC), Lentinus edodes (LE), Pleurotus eryngii (PE), Hericium coralloides (HC), Panellus serotinus (PS), and Ganoderma lucidum(GL), all cultivated using citrus pulp solid media, were assayed. Twenty-nine volatile components were identified in dry powder prepared Citrus unshiu and 18 volatile components were characterized from mushroom mycelia. Of these, ${\beta}-elemene$, germacrene-D, and ${\delta}-cadinene$, were derived from CJPW, but caryophyllene, hexadecanoic acid, decanoic acid, and tetradecanoic acid were synthesized by mushroom mycelia.

Identification of Volatile Compounds of 4 Grape Species by Storage Conditions (전자코와 GC/MS를 이용한 포도 품종별 저장 조건에 따른 휘발성 향기 성분 연구)

  • Lee, Yun-Jeung;Lee, Ki-Teak
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.7
    • /
    • pp.874-880
    • /
    • 2007
  • Volatile flavor compounds of 4 grape species (Campbell, Sheridan, Red globe, and Meoru) were identified during 3-day storage at either $4^{\circ}C$ or room temperature. Each sample was analyzed by solid-phase micro-extraction (SPME) method combined with gas chromatography-mass spectrometry. Also electronic nose composed of 12 different metal oxide sensors was used to differentiate flavors of grapes. Sensitivities (delta $R_{gas}/R_{air}$) of sensors from electronic nose were obtained by principal component analysis (PCA). Proportion of the first principal component was 99.30% at $4^{\circ}C$ and 99.36% at room temperature, respectively. In our result, flavor patterns of grape can be differentiated according to the storage period. The major volatile flavor compounds were 1-hexanol, hexanoic acid and its ethyl ester, and phenylethyl alcohol with the presence of butanoic acid and its ethyl ester, acetic acid, benzeneacetic acid and its ethyl ester.

Elicitation of Innate Immunity by a Bacterial Volatile 2-Nonanone at Levels below Detection Limit in Tomato Rhizosphere

  • Riu, Myoungjoo;Kim, Man Su;Choi, Soo-Keun;Oh, Sang-Keun;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.502-511
    • /
    • 2022
  • Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.

A Study on the solid waste of Buk Han Mt National Park (북한산 국립공원의 고형 폐기물에 관한 연구)

  • 도갑수;장일영;김광진
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.12-24
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF

Carbon-Based Solid Acid as an Efficient and Reusable Catalyst for the Synthesis of 1,8-Dioxodecahydroacridines Under Solvent-Free Conditions

  • Davoodnia, Abolghasem;Khojastehnezhad, Amir;Tavakoli-Hoseini, Niloofar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2243-2248
    • /
    • 2011
  • Carbon-based solid acid catalyst was found to be highly efficient, eco-friendly and recyclable heterogeneous catalyst for the multicomponent reaction of dimedone, aromatic aldehydes, and a nitrogen source (ammonium acetate or aromatic amines) under solvent-free conditions, giving rise to 1,8-dioxodecahydroacridines in high yields. The present methodology offers several advantages, such as a simple procedure with an easy work-up, short reaction times, high yields, and the absence of any volatile and hazardous organic solvents.