• Title/Summary/Keyword: Volatile organic compounds (VOCs)

Search Result 686, Processing Time 0.028 seconds

A Numerical Study on the Behavior Characteristics of Ethylbenzene and 1, 2, 3-Trimethylbenzene in a Conference Room (회의실 카페트에서 방출되는 Ethylbenzene과 1, 2, 3-Trimethylbenzene의 거동특성에 관한 수치해석적 연구)

  • Lee, Chang-Geun;Jeong, Jin;Kim, Chang-Nyung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.137-143
    • /
    • 2006
  • This study has been conducted to quantify the emissions of Volatile Organic Compounds (VOCs) in a conference room. The carpet has emitted a variety of VOCs, but in this study, 2 VOCs compounds have been considered: Ethylbenzene and 1, 2, 3-Trimethylbenzene. In this study, a three dimensional numerical analysis has been carried out to investigate the emission and behavior characteristics of Ethylbenzene and 1, 2, 3-Trimethylbenzene emitted from the carpet in the conference room. The mass diffusion coefficient and the initial concentrations of VOCs in the carpet have been obtained from experimental data with non-linear regression. It has been found that the concentrations and emission factors of VOCs have exponentially decayed with time and that the concentration gradients and emission factors of VOCs are different from each other for various components. This study may supply fundamental understandings for the emission and behavior characteristics of VOCs.

Calculation of Film Diffusion Coefficients and Surface Diffusion Coefficients of Volatile Organic Compounds Using Activated Carbon Adsorption Model and Small Column Test (활성탄 흡착모델과 칼럼실험을 통한 Volatile Organic Compounds의 막확산계수와 표면확산계수의 도출)

  • Lee, Byoung-Ho;Lee, Joon-Hee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.72-80
    • /
    • 1999
  • Separation of VOCs(Volatile Organic Compounds) in Water Using Activated Carbon is known to be effective. Activated Carbon has been and will be employed in many water treatment plants. Simplified plug flow homogeneous surface diffusion model(PFHSDM) has been used to predict adsorption of organic matter. Finite Element Method(FEM) was used to analyze the model. Out of water quality control substances, benzene, toluene and tetrachloroethylene were used in the small column test. Film diffusion coefficients and surface diffusion coefficients were obtained from the column test, and were compared with the modeling results. Mc Cune, Williamson, William and Kataoka model, were compared with film diffusion coefficients obtained in the test. McCune model was fitted best for those VOCs used in this experiment. Film diffusion coefficients of VOCs obtained were benzene 0.265 cm/min, toluene 0.348 cm/min and tetrachloroethylene 0.298 cm/min. Surface diffusion coefficients of VOCs obtained were benzene $6.36{\times}10^{-8}cm^2/min$, toluene $3.20{\times}10-8cm2/min$, and tetrachloruethylene $4.94{\times}10^{-8}cm^2/min$.

  • PDF

The implementation of liquefaction equipment monitoring system based on Android (안드로이드 기반의 유증기 액화장치 모니터링 시스템 구현)

  • Park, Man-Kyu;Tack, Han-Ho;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.583-589
    • /
    • 2016
  • Volatile organic compounds(VOCs) are regarded as a harmful cause substance not only causing air pollutions but also causing global warming phenomenon. For this reason, VOCs are managed politically to reduce emissions by each country. In particular, the vapor from the gas station contains VOCs which is harmful to the human body such as carcinogens benzene and pollute the atmosphere, the Ministry of Environment defined every gas station must install vapor recovery equipment to recover volatile organic compounds. Recently, there are many accidents caused by existing vapor treatment methods, the liquefaction recovery technology is getting the spotlight to cool the vapor at the field. However, because the liquefaction recovery technology have risks of fire or explosion in accordance with temperature, the real time monitoring is critical factor. In this paper, we implement an Android-based monitoring application for liquified vapor recovery device which attached sensor module for temperature and power to monitoring real time information.

A Study on the Source Profile of Volatile Organic Compounds from Major Emission Sources (휘발성 유기화합물의 주요 배출원의 배출물질 구성비에 관한 연구-오존 생성 전구물질을 중심으로-)

  • 김소영;한진석;김희강
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.3
    • /
    • pp.233-240
    • /
    • 2001
  • The composition of volatile organic compounds (VOCs) was anlyzed for major emission sources such as vehicle exhaust, gasoline and diesel vapor, organic solvent vapor, and butane fuel gas. Low carbon-numbered hydrocarbons were found to be the dominant components of gasoline vehicle exhaust. In gasoline evaporative vapor, the predominant constituents were found to be butane and iso-pentane regardless of ambient air temperature. In case of diesel evaporative vapor was similar to those of gasoline evaporative vapor. The composition of organic solvent vapor from painting, ink and petroleum consisted mostly or aromatic compounds such as toluene and m, p, o-xylene. The hydrocarbon fraction of butane fuel gas. which is used by portable bunner, consisted mainly of propane (34%) and butane(70%).

  • PDF

Concentration of Volatile Organic Compounds at Main Stream and Branch Stream of Kumho River (금호강 본류와 지류에서의 휘발성 유기화합물질 농도)

  • 김용혜;장봉기;홍성철;이종영
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.135-146
    • /
    • 1998
  • In this study, we investigated to measured concentration, seasonal characteristics and load quantity of volatile organic compounds(VOCs) for 11 sites in the main stream and 8 sites in the branch stream of Kumho river, during from October 1995 to April 1997. As a results, the small amount of volatile compounds, such as dichloromethane, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, p-xylene and 1,3,5-trimethyl-benzene were detected from the main stream of Kumho river. Also detected to dichloromethene, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, ethylbenzene, p-xylene, 1,3,5-trimethylbebzene and 1,2,4-trimethylbenzene in the branch stream, and dichloromerhane, chloroform and toluene were detected to all site of sampling. And seasonal variation of volatile organic compounds showed higher concentration in the July 1996 as a winter season than January 1997 as a summer season in most places. Also the load quantity of volatile organic compound at Gangchang site in the last downstream of Kumho river, was in order of chloroform > dichloromethane > toluene > trichloroethene.

  • PDF

Emission Characteristics of Volatile Organic Compounds from the Interior Materials of Railroad Rolling Stocks (철도차량 내장재에서의 VOCs 방출 특성)

  • Park Duck-Shin;Cho Young-min
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.235-240
    • /
    • 2004
  • The aim of this study is to investigate the emission characteristics of volatile organic compounds from the interior materials of railroad rolling stock. Samples for VOCs were collected using a environmental chamber and the samples were analyzed for 35 individual compounds. 6 different types of materials, seat cover and flour material of Mugunghwaho, Saemaeulho and electric rolling stock were analysed. The results were expressed as concentrations over 12, 18, 24, 36 and 48 hours. VOCs concentrations were measured to be higher in the 12 hours than in the 48 hours. Floor material of Mugunghwaho showed the highest concentration of all studied materials. Followed by floor materials of Saemaeulho and electric rolling stock.

  • PDF

Roles of flower scent in bee-flower mediations: a review

  • Bisrat, Daniel;Jung, Chuleui
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.18-30
    • /
    • 2022
  • Background: Bees and flowering plants associations were initially began during the early Cretaceous, 120 million years ago. This coexistence has led to a mutual relationship where the plant serves as food and in return, the bee help them their reproduction. Animals pollinate about 75% of food crops worldwide, with bees as the world's primary pollinator. In general, bees rely on flower scents to locate blooming flowers as visual clue is limited and also their host plants from a distance. In this review, an attempt is made to collect some relevant 107 published papers from three scientific databases, Google Scholar, Scopus, and Web of Science database, covering the period from 1959 to 2021. Results: Flowering plants are well documented to actively emit volatile organic compounds (VOCs). However, only a few of them are important for eliciting behavioral responses in bees. In this review, fifty-three volatile organic compounds belonging to different class of compounds, mainly terpenoids, benzenoids, and volatile fatty acid derivatives, is compiled here from floral scents that are responsible for eliciting behavioral responses in bees. Bees generally use honest floral signals to locate their host plants with nectar and pollen-rich flowers. Thus, honest signaling mechanism plays a key role in maintaining mutualistic plant-pollinator associations. Conclusions: Considering the fact that floral scents are the primary attractants, understanding and identification of VOCs from floral scent in plant-pollinator networks are crucial to improve crop pollination. Interestingly, current advances in both VOCs scent gene identification and their biosynthetic pathways make it possible to manipulate particular VOCs in plant, and this eventually may lead to increase in crop productivity.

The Analysis of Volatile Organic Compounds in Water by Using the Purge-and-Trap and the Gas Chromatography/Mass Selective Detector with Modified Indirect Coupling (퍼지-트랩장치와 변형된 간접 결합기를 부착한 기체크로마토그래피/질량 선택성 검출기를 이용한 물중의 휘발성 유기화합물의 분석)

  • 정영자
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.191-191
    • /
    • 1999
  • A Purge & Trap Concentrator was used to analyze various volatile organic compounds(VOCs) in wat-er. The object of this study was to observe the purge efficiency of 40 VOCs in water according to the change of parameters (purge time drypurge time sample temperature) and to determine the optimum condition for VOCs using the purge & Trap concentrator interfaced with a narrow capillary connected to a gas chromatography/mass spectrometry. The optimum condition of purge and trap is as follows: purge time at 11min drypurge time at 5min sample temperature at 6$0^{\circ}C$ at constant purge flow (40mol/min) constant desorption flow(20ml/min) desorption temperature(2$25^{\circ}C$) and desorption time (1min) At this analytical condition the detection limits of VOCs was in the range of 0.1~0.5$\mu$g/ml and the purge efficiency of each compound was over 70%.

In-Vehicle Exposure to Volatile Organic Compounds (휘발성 유기물질에 대한 차량 탑승시 노출)

  • 조완근
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.2
    • /
    • pp.151-157
    • /
    • 1996
  • Vehicle occupant exposure to volatile organic compounds (VOCs) continues to be the subject of active research because of higher levels of VOCs in vehicles than in the surrounding ambient atmosphere and because of potential health risk. This study identified in-auto and in-bus exposures to 6 selected aromatic VOCs during rush-hour driving. A bus service route was selected to include an urban route (Taegu) and a suburban route (Hayang-Up) to satisfy the specified criteria of this study. The most abundant VOC concentration measured in this study was toluene. In-vehicle target Voc concentrations of the urban route were significantly different from those of the suburban segment. On the sum of average of the target VOCs, in-auto VOC concentration was about 1.5 times higher than in-bus VOC concentration. Based on the sum of average, in-automobile target VOC concentrations of this study were within the range of previous studies conducted in several cities of the United States, while in-bus VOC concentrations of this study were much lower than those of Taipei in Taiwan. In-vehicle VOC concentrations of present study significantly varied with sampling days, while they did not varied with driving period.

  • PDF

A Kinetic Study on the Photocatalytic Degradation of Gas-Phase VOCs Using TiO$_2$ photocatalyst

  • Kim, Sang-Bum;Jo, Young-Min;Hong, Sung-Chang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.E3
    • /
    • pp.117-124
    • /
    • 2001
  • The present paper examined the kinetics of photocatalytic degradation of volatile organic compounds (VOCs) including gaseous trichloroethylene (TCE) and acetone. In this study, we examined the effects of the initial concentration of VOCs and the light intensity of ultra-violet (UV). A batch photo-reactor was specifically designed for this work. The photocatalytic degradation rate increased with the initial concentration of VOCs but remained almost constant beyond a certain concentration. It matched well with the Langmuir-Hinshelwood (L-H) kinetic model. When the effect of light intensity was concerned, it was found that photocatalytic degradation occurs in two regimes with respect to light intensity.

  • PDF