• 제목/요약/키워드: Volatile organic chemical

검색결과 491건 처리시간 0.023초

생물계면활성제를 이용한 휘발성유기물질의 처리 (Microbial Biosurfactants and the Treatment of Volatile Organic Compounds)

  • 이기섭;김기은
    • KSBB Journal
    • /
    • 제24권1호
    • /
    • pp.17-24
    • /
    • 2009
  • For the biosurfactant production process at first Candida bombicola, Sphingomonas yanoikuyae, Sphingomonas chungbukensis and Myxococcus flavescens were studied. As the most productive microorganisms C. bombicola, S. yanoikuyae and S. chungbukensis were selected. During many petrochemical industrial processes variable volatile organic componds are produced and they can cause an unpleasent and unhealthy atmosphere. Usually the volatile organic compounds are treated with chemical detergents. The chemical detergents cannot be easily degradable and can be accumulated in the nature. In this study we tried to develop a production process for the biosurfactants, which can substitute some chemical detergents in some chemical processes, with microorganisms. At second the treatment of the volatile organic compounds with the biosurfactants were tested and compared with the treatment with chemical detergent. The production productivities of the biosurfactant with microorganisms were compared. The growth patterns and kinetics of the microbial cells and the surface tension values of the biosurfactants were studied. The changes of the surface tension in variable pH conditions and sodium chloride concentrations were also studied. The volatile organic carbons were treated in a small plant scale. As the result of this study, it indicated that the specific growth rate of S. chungbukensis was the fastest by 0.144 ($hr^{-1}$). For surface tension, C. bombicola (38.1 dyne/cm) had the lowest value, and solubility of the volatile organic carbon was similar in C. bombicola and S. chungbukensis. (Toluene: about 0.1 Unit, Chloroform: about 0.6${\sim}$0.7 Unit, Benzene: about 0.5${\sim}$0.8 Unit). The biosurfactant, which were produced by C. bombicola, was selected for the further study for the volatile organic carbon treatment. With the biosurfactans from C. bombicola could remove the volatile organic carbon about 80% and this removal rate can be comparable with chemical detergent.

Surface-enhanced infrared detection of benzene in air using a porous metal-organic-frameworks film

  • Kim, Raekyung;Jee, Seohyeon;Ryu, Unjin;Lee, Hyeon Shin;Kim, Se Yun;Choi, Kyung Min
    • Korean Journal of Chemical Engineering
    • /
    • 제36권6호
    • /
    • pp.975-980
    • /
    • 2019
  • Infrared (IR) spectroscopy is a powerful technique for observing organic molecules, as it combines sensitive vibrational excitations with a non-destructive probe. However, gaseous volatile compounds in the air are challenging to detect, as they are not easy to immobilize in a sensing device and give enough signal by themselves. In this study, we fabricated a thin nanocrystalline metal-organic framework (nMOF) film on a surface plasmon resonance (SPR) substrate to enhance the IR vibration signal of the gaseous volatile compounds captured within the nMOF pores. Specifically, we synthesized nanocrystalline HKUST-1 (nHKUST-1) particles of ca. 80 nm diameter and used a colloidal dispersion of these particles to fabricate nHKUST-1 films by a spin-coating process. After finding that benzene was readily adsorbed onto nHKUST-1, an nHKUST-1 film deposited on a plasmonic Au substrate was successfully applied to the IR detection of gaseous benzene in air using surface-enhanced IR spectroscopy.

DEVELOPMENT OF MEMBRANE AND COLD-CONDENSATION PROCESS FOR REMOVAL AND RECOVERY OF VOLATILE ORGANIC COMPOUNDS

  • Kim, Sung-Soo;Lee, Jong-Hwa;Kim, Hyunki;Kim, Sang-Yong
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 The 4th Korea-Italy Workshop
    • /
    • pp.69-72
    • /
    • 2003
  • Volatile organic compounds (VOC) cause air pollution problem and deterioration of atmosphere of petrochemical and fine chemical plants. Hybrid process of membrane and cold-condensation were developed and it effectively removed and recycled the VOC. Operation parameters of the process were optimized to attain hish removal and recycle of VOC. Composite membranes for organic vapor separation were developed in this work by PDMS coating and plasma polymerization on polypropylene and polysulfone support membranes. PDMS and various silicone monomers were tested for several organic vapors such as benzene, toluene, TCE, and HCFC, which are produced in petrochemical and fine chemical industry and causes air pollution problems if are released to atmosphere. Composite membranes prepared in this work showed appreciable performance in terms of organic vapor removal and reuse. Performance variation of the membranes was correlated with their surface characteristics.

  • PDF

대기중의 휘발성 유기물 제거용 분리막 (Membrane for the Removal of Volatile Organic Compounds from Air)

  • Deng, S.;Lang, K.;Wang, J.;Tremblay, A.;Matsuura, T.
    • 멤브레인
    • /
    • 제7권1호
    • /
    • pp.22-30
    • /
    • 1997
  • Porous asymmetric membranes were prepared from polyetherimide polymer by the phase-inversion technique under different conditions. The performance of the membranes was tested for the removal of acetone vapour from nitrogen. A membrane which showed a high acetone permeability and a high selectivity was chosen and tested further for the separation of different organic vapours from nitrogen. The molecular structure of organic vapours and the selectivity were correlated. A strong correlation was also found between the chromatographic retention time of the organic vapour and the selectivity. These experimental results led to the conclusion that the sorption is the factor governing the separation of volatile organic compounds from nitrogen. A membrane was also prepared by coating the surface of a porous polyetherimide membrane with silicone rubber. The performance of membranes with and without silicone rubber coating was compared.

  • PDF

SPME를 이용한 수용액중의 휘발성 유기화합물 분석 (Determination of Volatile Organic Compounds (VOCs) in Drinking Water using Solid Phase Microextraction (SPME))

  • 박교범;이석근
    • 분석과학
    • /
    • 제13권3호
    • /
    • pp.277-281
    • /
    • 2000
  • 16종의 휘발성 유기화합물을 blank water에 첨가하고 고정상으로 $100{\mu}m$ polydimethyl siloxane을 입힌 solid phase microextraction(SPME) fiber를 사용하는 headspace SPME방법으로 추출하여 gas chromatography/mass spectrometry (GC/MS)로 분석하였다. 이 방법의 평균회수율은 97%, 평균상대표준편차는 4.7%, 그리고 검출한계는 $0.01-0.5{\mu}g/l$를 나타냈다. 즉 SPME 방법을 이용한 수용액 중의 휘발성 유기화합물의 결과는 현재 많이 사용되고 있는 기존의 다른 방법보다 우수하고 편리한 방법으로 나타났다.

  • PDF

Emissions of Volatile Organic Compounds from a Swine Shed

  • Osaka, Nao;Miyazaki, Akane;Tanaka, Nobuyuki
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권2호
    • /
    • pp.178-191
    • /
    • 2018
  • The concentrations and chemical compositions of volatile organic compounds (VOCs), including volatile fatty acids, phenols, indoles, aldehydes, and ketones, which are the main organic compounds generated by swine, were investigated in July and October 2016 and January 2017. In addition, the emission rates and annual emissions of these components from the swine shed were estimated. The concentrations of VOCs in the swine shed averaged $511.3{\mu}g\;m^{-3}$ in summer, $315.5{\mu}g\;m^{-3}$ in fall and $218.6{\mu}g\;m^{-3}$ in winter. Acetone, acetic acid, propionic acid, and butyric acid were the predominant components of the VOCs, accounting for 80-88% of the total VOCs. The hourly variations of VOC concentrations in the swine shed in fall and winter suggest that the VOC concentrations were related to the ventilation rate of the swine shed, the activity of the swine, and the temperature in the swine shed. Accordingly, the emission rates of VOCs from the swine shed were $1-2{\times}10^3{\mu}g(h\;kg-swine)^{-1}$.

복합 유기혼합물체로부터 휘발성이 서로 다른 세 유기화합물 그룹의 분리 농축방법의 연구 (Isolation and Concentration of Organic Components from a Complex Matrix into Three Fractions of Different Volatilities)

  • 김경례
    • 대한화학회지
    • /
    • 제25권1호
    • /
    • pp.30-37
    • /
    • 1981
  • 복합 유기혼합체로부터 휘발성이 다른 세 그룹을 분리 농축할 수 있는 간단한 소형장치가 고안되었다. 이 장치를 사용하여 휘발성이 높은 유기성분들은 테넥스지씨에 헤드스페이스 트랩핑하고 남은 시료를 유기용매로 용출하여 얻어진 용출들을 휘발성 및 비휘발성 그룹으로 분리 농축할 수 있었다. 얻어진 휘발성 성분그룹은 고성능 캐리러리 가스크로마토그래피로 분석하였고, 비휘발성 성분그룹은 고성능 액체크로마토그래피에 의해서 분석하였다. 상세한 실험방법 및 유기 혼합물질인 잎담배를 시료로 사용하여 얻어진 분석 결과가 언급되어 있다.

  • PDF

A Study on Purge Efficiency in Purge and Trap Analysis of VOCs in Water

  • 이강진;표희수;박송자;유은아;이대운
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.171-178
    • /
    • 2001
  • A Purge and Trap Concentrator has been used to analyze various volatile organic compounds in water, operating several parameters affecting the extraction efficiencies of these compounds. The object of the present study was to observe the purge efficiencies of 40 volatile organic compounds (VOCs) in water, according to the change of parameters (purge time, dry purge time, sample temperature), and to determine the optimum condition of analysis of VOCs. The Purge and Trap Concentrator was interfaced with a narrow capillary connected to a gas chromatography mass spectrometer. At this condition, the detection limits of VOCs were in the range of 0.1-0.5 ㎍/L.

Extraction Methods of Organic Components from Rubber Composites and Analysis of the Extract Using Gas Chromatography/Mass Spectrometry

  • Chae, Eunji;Choi, Sung-Seen
    • Elastomers and Composites
    • /
    • 제54권3호
    • /
    • pp.188-200
    • /
    • 2019
  • Rubber articles contain various organic additives such as antidegradants, curing agents, and processing aids. It is important to extract and analyze these organic additives. In this paper, various extraction methods of organic additives present in rubber composites were introduced (solvent extraction, Soxhlet extraction, headspace extraction, and solid-phase microextraction), and the extracts were characterized using gas chromatography/mass spectrometry (GC/MS). Solvent and Soxhlet extractions are easy-to-perform and commonly used methods. Efficiency of solvent extraction varies according to the type of solvent used and the extraction conditions. Soxhlet extraction requires a large volume of solvent. Headspace sampling is suitable for extracting volatile organic compounds, while solid-phase extraction is suitable for extracting specific chemicals. GC/MS is generally used for characterizing the extract of a rubber composite because most components of the extract are volatile and have low molecular weights. Identification methods of chemical structures of the components separated by GC column were also introduced.