• Title/Summary/Keyword: Volatile hydrocarbon

Search Result 86, Processing Time 0.026 seconds

Structural Analysis of Volatile Matters and Heavy Oil Fractions from Pyrolysis Fuel Oil by the Heat Treatment Temperature (열처리 온도에 따른 열분해 연료유 내 휘발유분 및 잔류 중질유분의 구조 분석)

  • An, Donghae;Kim, Kyung Hoon;Kim, Jong Gu;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.297-302
    • /
    • 2019
  • In order to investigate structural changes of the pyrolysis fuel oil (PFO), the volatile matters and heavy oil fractions were separated from PFO by heat treatment temperature. As a result of $^1H-NMR$ analysis of volatile matters, 1~2 ring aromatic compounds contained in the petroleum residue were mostly removed at a temperature before $340^{\circ}C$. Moreover, new peaks corresponding to aliphatic hydrocarbons were detected at the chemical shift of 2.0~2.4 ppm. It is attributed that the aliphatic hydrocarbon sidechain was cracked from the aromatic compound by the cracking reaction occurred at $320^{\circ}C$. The C/H mole ratio and aromaticity increased with increasing the heat treatment temperature. Therefore, from the structural analysis results of heavy oil fractions and volatile matters from PFO, the decomposition of the aliphatic sidechain by cracking reaction and the separation of volatile matters by boiling point of components were mostly affected structure changes of the PFO.

A Study on Torrefaction Characteristics of Sewage Sludge (하수슬러지의 반탄화 특성에 관한 연구)

  • Lim, Dae-Won;Poudel, Jeeban;Oh, Sea Cheon
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.510-514
    • /
    • 2014
  • In this work, the effect of torrefaction on the basic characteristic of sewage sludge was studied to evaluate the energy potential as a solid fuel. Torrefaction experiments were performed at temperatures of $150{\sim}600^{\circ}C$. The torrefied sewage sludge was characterized by the energy yield, ash content, volatile fraction and high heating value (HHV). The gaseous products from torrefaction of the sewage sludge were also analyzed. Thermogravimetric analysis was carried out for the kinetic analysis of sewage sludge torrefaction. From this work, it was found that the ash content increased with an increase of the torrefaction temperature while the energy yield, HHV and volatile fraction decreased. It was also found that the emission of carbon monoxide and hydrocarbon gases started at $300^{\circ}C$ by the thermal degradation of volatile components in the sewage sludge.

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Volatile flavor components of soybean pastes manufactured with traditional Meju and improved Meju (재래식 메주와 개량식 메주로 제조한 된장의 휘발성 향기성분)

  • Ji, Won-Dae;Lee, Eun-Ju;Kim, Jong-Kyu
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.248-253
    • /
    • 1992
  • Volatile flavor components of soybean pastes, manufactured with traditional Meju and improved Meju, were extrated by simultaneous steam distillation-extraction apparatus and concentrated at atmosphere press. The concentrates were investigated GC-sniff evaluation by preparative gas chromatograph, and then analyzed and identified by GC/MS and Kovats retention index. Thirty nine components, including 11 alcohols, 4 aldehydes, 2 pyrazines, 4 acids, 3 fuans, 3 phenols, 3 esters, 3 hydrocarbons, 1 ketone, 5 miscellous ones were confirmed in soybean paste manufactured with traditional Meju. Twenty one components, including 4 alcohols, 2 aldehydes, 2 pyrazines, 2 acids, 1 fuan, 2 esters, 1 hydrocarbon, 2 ketones, 4 miscellous ones were confirmed in soybean paste manufactured with improved Meju. Ten components such as 3-methyl-1-butanol, 4-methyl-3-heptanol, trimethyl-pyrazine, 1-octen-3-ol, 2-furancarboxaldehyde, tetramethyl-pyrazine, benzaldehyde, 3-methyl-butanoic acid, naphthalene, 2-ethyl-3-methyl-oxetane were identified together in soybean pastes manufactured with traditional Meju and improved Meju.

  • PDF

GC-MS Analysis of Volatile Constituents from Acanthopanax sessiliflorus (오갈피나무의 정유성분 GC-MS 분석)

  • Lim, Soon-Sung;Lee, Yeon-Sil;Lee, Sul-Lim;Kim, Jong-Kee;Cho, Seon-Haeng;Shin, Kuk-Hyun;Lee, Sang-Hyun
    • Korean Journal of Pharmacognosy
    • /
    • v.39 no.1
    • /
    • pp.7-18
    • /
    • 2008
  • The chemical composition of the volatile constituents from the leaves, stems, and roots of Acanthopanax sessiliforus growing wild in Mt. Deok-Yu was determined by GC and GC-MS spectrometric analysis with the aid of NBS, Wiley Library and RI indice searches. The major constituents identified were ${\delta}-3-carene$ (7.24%), limonene (8.10%), ${\beta}-thujene$ (17.85%), trans-bicyclic hydrocarbon (13.35%) and ${\delta}-cadinene$ (4.28%) in the leaves from one year-grown plants, tricyclene (7.21%), ${\beta}-myrcene$ (7.62%), limonene (10.23%), ${\beta}-thujene$ (15.61%) and dihydroedulan I (6.12%) in the leaves from three years-grown plants, ${\delta}-3-carene$ (4.96%), limonene (5.93%), ${\beta}-phellandrene$ (17.31%) and naphthalene (7.79%) in the stems from one year-grown plants, ${\alpha}-pinene$ (5.21%), limonene (5.12%) and ${\beta}-phellandrene$ (9.82%) in the stems from three years-grown plants, ${\alpha}-pinene$ (12.73%), ${\beta}-pinene$ (11.16%), ${\delta}-3-carene$ (6.16%) and ${\gamma}-cadinene$ (23.39%) in the roots from one year-grown plants, and ${\alpha}-pinene$ (17.25%), ${\beta}-pinene$ (9.35%), ${\delta}-3-carene$ (7.26%) and ${\gamma}-cadinene$ (17.95%) in the roots from three years-grown plants.

Study on Sensory Properties and Volatile Flavor Compounds of Kimchi Added with Backryeoncho (Opuntia ficus-indica var. saboten) Extracts (백련초 추출물 첨가 김치의 관능적 특성 및 휘발성 성분에 대한 연구)

  • Lee, Young-Sook;Jeong, Eun-Jeong;Rho, Jeong-Ok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.4
    • /
    • pp.506-513
    • /
    • 2012
  • This principal objective of this study was to evaluate the sensory properties and flavor compounds of Kimchi prepared with different levels (0.0%, 0.4%, 0.8%, and 1.2%) of Backryeoncho extracts (BE). At high levels of BE, Kimchi showed increased level of crispness and flavor, and also jeotgal odor decreased in the sensory evaluation. Addition of 0.8 % BE resulted in the highest scores for color, taste, and overall acceptance of Kimchi. Therefore, addition of 0.8 % BE appears to be an acceptable approach to enhance the quality of Kimchi without reducing acceptability. As a result of flavor compound analysis, a total of 24 volatile flavor compound, including 11 S-containing compounds, 6 terpenes, 1 acid, 1 ester, 1 alcohol, 2 miscellaneous compounds, 2 thiocyanates, etc., were detected by GC/MS. The major volatile compounds were s-containing compounds and terpene hydrocarbon, and especially terpene of sabinene was newly detected in Kimchi with added BE. Levels of 2-vinyl-[4H]-1,3-dithin derived from garlic flavor as a sulfide-containing compound along with diallyl trisulfide derived from green onion flavor were reduced in Kimchi with added 0.8% BE. Most sulfide-containing compounds were reduced in Kimchi with added BE, whereas most terpenes detected in control Kimchi were not detected.

The Characteristics of the Appearance and Health Risks of Volatile Organic Compounds in Industrial (Pohang, Ulsan) and Non-Industrial (Gyeongju) Areas

  • Jung, Jong-Hyeon;Choi, Bong-Wook;Kim, Mi-Hyun;Baek, Sung-Ok;Lee, Gang-Woo;Shon, Byung-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.12.1-12.8
    • /
    • 2012
  • Objectives: The aim of this study was to identify the health and environmental risk factors of air contaminants that influence environmental and respiratory diseases in Gyeongju, Pohang and Ulsan in South Korea, with a focus on volatile organic compounds (VOCs). Methods: Samples were collected by instantaneous negative pressure by opening the injection valve in the canister at a fixed height of 1 to 1.5 m. The sample that was condensed in $-150^{\circ}C$ was heated to $180^{\circ}C$ in sample pre-concentration trap using a 6-port switching valve and it was injected to a gas chromatography column. The injection quantity of samples was precisely controlled using an electronic flow controller equipped in the gas chromatography-mass spectrometer. Results: The quantity of the VOC emissions in the industrial area was 1.5 to 2 times higher than that in the non-industrial area. With regards to the aromatic hydrocarbons, toluene was detected at the highest level of 22.01 ppb in Ulsan, and chloroform was the halogenated hydrocarbons with the highest level of 10.19 ppb in Pohang. The emission of toluene was shown to be very important, as it accounted for more than 30% of the total aromatic hydrocarbon concentration. Conclusions: It was considered that benzene in terms of the cancer-causing grade standard, toluene in terms of the emission quantity, and chloroform and styrene in terms of their grades and emission quantities should be selected for priority measurement substances.

Reduction of Lean VOC Emission by Reforming with a Rotating Arc Plasma and Combustion with a Turbulent Partially-Premixed Flame (난류 부분예혼합화염과 로테이팅 아크 플라즈마를 이용한 난연성 유증기의 연소처리)

  • Ahn, Taekook;Lee, Daehoon;Park, Sunho
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.23-31
    • /
    • 2017
  • Large-scale fuel tanks emit massive amount of hardly-combustible VOC mixtures which are light hydrocarbon species in dilution with nitrogen and carbon dioxide. We have developed a lab-scale burner to combust those VOC mixtures by use of a turbulent partially-premixed flame as a pilot flame. For a higher HC treatment ratio, the mixture gases were reformed by a rotating arc plasma device. The results showed that the nitrogen mole fraction and the injecting speed of the VOC mixture influence on the performance of the burner. It was also found that the size of the pilot flame and the power supplied to the plasma device determine the overall HC treatment ratio and the concentrations of CO and NOx in the exhaust gas.

Volatile Flavor Components in Chinese Quince Fruits, Chaenomeles sinensis koehne (모과의 휘발성 Flavor 성분에 관한 연구)

  • Chung, Tae-Young;Cho, Dae-Sun;Song, Jae-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.176-187
    • /
    • 1988
  • Volatile flavor components in the Chinese quince fruits were trapped by simultaneous steam distillation-extraction method, and these were fractionated into the neutral, the basic, the phenolic and the acidic fraction. In the identification of carboxylic acids, the acidic fraction was methylated with diazomethane. Volatile flavor components in these fractions were analyzed by the high-resolution GC and GC-MS equipped with a fused silica capillary column. The total of one hundred and forty-five compounds from the steam volatile concentrate of the Chinese quince fruits were identified: they were 3 aliphatic hydrocarbons, 1 cyclic hydrocarbon, 4 aromatic hydrocarbons, 9 terpene hydrocarbons, 17 alcohols, 3 terpene alcohols, 6 phenols, 21 aldehydes, 7 ketones, 28 esters, 27 acids, 3 furans, 2 thiazoles, 2 acetals, 3 lactones and 9 miscellaneous ones. The greater part of the components except for carboxylic acids were identified from the neutral fraction. The neutral fraction gave a much higher yield than others and was assumed to be indispensable for the reproduction of the aroma of the Chinese quince fruits in a sensory evaluation. According to the results of the GC-sniff evaluation, 1-hexanal, cis-3-hexenal, trans-2-hexenal, 2-methyl-2-hepten-6-one, 1-hexanol, cis-3-hexenol, trans, trans-2, 4-hexadienal and trans-2-hexenol were considered to be the key compounds of grassy odor. On the other hand, esters seemed to be the main constituents of a fruity aroma in the Chinese quince fruits.

  • PDF

Flavor Components of the Fruit Peel and Leaf Oil from Zanthoxylum piperitum DC (초피(Zanthoxylum piperitum DC)의 과피와 잎의 방향성분)

  • Kim, Jung-Han;Lee, Kyung-Seok;Oh, Won-Taek;Kim, Kyoung-Rae
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.562-568
    • /
    • 1989
  • The essential oils from ripe fruit peel and leaf of Zanthoxylum piperitum DC were extracted by gas co-distillation method and analyzed by gas chromatography/mass spectrometry (GC/ MS) and retention index matching. The experimental results revealed the presence of over 100 volatile components. Major components were 1,8-cineol (25.47%), limonene (11.91%), geranyl acetate (9.01%), myrcene (6.15%) in fruit peel and citronellal (23.11%), 1,8-cineol (18.38%), citronellol (6.04%) in leaf. Among the components identified were the following; in fruit peel, ${\alpha}-pinene$ and 13 hydrocarbons, linalool and 8 alcohols, citronellal and 3 aldehydes, carvone and 2 kotones, methyl salicylate and 7 esters, and 1,8-cineol and oxides, and in leaf, ${\alpha}-pinene$ and 7 hydrocarbons, linalool and 7 alcohols, citronellyl acetate and 5 esters, citronellal and 1 aldehyde, carvone, and 1,8-cineol and 1 oxide.

  • PDF