• Title/Summary/Keyword: Volatile Organic compounds

Search Result 1,287, Processing Time 0.028 seconds

The study for VOCs analysis in long path by open path FT-IR spectrometer (Open path FT-IR spectrometer를 사용한 원거리의 VOCs 측정에 관한 연구)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • The harmful materials as volatile organic compounds (VOCS) that is easy for gas to be changed from liquid on ambient temperature, those should be controlled by Korea Chemicals Management Association. The VOCs samples should be collected directly in place so that those could be analyzed. Generally but it couldn't avoid to have the risk of analyst. Moreover, if there is the place limited to entrance, it is impossible to collect directly and measure. Owing to such problem, it tried to be solved by open path FT-IR spectrometer that could be studied on the combustion gases within long path and VOCs samples were tried to measure to large volume by remote and real time. Firstly, it was to investigate optimized measured length between the system and benzene sample of VOCs. As result, The optimized measured length was confirmed with 15 meter length and the qualitative analysis could be measured on seven VOC samples. The calibration curve as quantitative analysis of benzene samples could be worked. On the basis of the result, the system as remote monitor could show to have potentiality.

The Assessment and Recognition on Indoor Air Quality at Schools in Korea (전국 일부 학교 건축물 내의 실내 공기 및 인식도 조사)

  • Sohn Jong-Ryeul;Yoon Seung-Uk;Kim Jong-Hyuk;Lee Yong-Sik;Choi Han-Young;Kim Young-Sung;Son Bu-Soon;Yang Won-Ho;Kim Min-Hoi
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.1-9
    • /
    • 2005
  • Recently, indoor air quality (IAQ) in workplace, residential environments and schools has been concerned of people, scientists and related the public, and has recognized the healthy effectsrelated to IAQ, specially in schools in Korea. Therefore, objectives of this study in this study were to measure and compare the perception of TAQ of selected air pollutants in Seoul from April to September 2004. Measurement place measured 2 schools of Seoul and local 9 schools (by Kyonggi Province, Chungchong-bukdo Chungchong-namdo, Chollado-bukdo, Cholla-namdo, Kyongsang-bukdo, Kyongsang-namdo, Kwangju, schoolin Pusan each 1 place). Temperature, humidity, illumination, carbon monoxide, carbon dioxide, TBC (total bacteria count), noise, PM10, TVOC(total volatile organic compounds), HCHO (formaldehyde) were measured simultaneously. Also, we Performed a questionnaire survey of 250 students and 50 teachers about their awareness for the importance of IAQ in their schools. Among this article, we handled noise, carbon monoxide, carbon dioxide, TBC, TVOC, HCHO, PM 10 in our conclusion. Major results were as follows ; Carbon monoxide (CO) was lower than indoor air standard of Korea. Carbon dioxide $(CO_2)$ appeared that 4 schools among our sample target school exceeded in normal standard. 4 schools were almost similar with normal standard. TBC appeared that 7 schools among 11 schools were higher than standard. Noise measured school's mean value passed exceeded standard. And school which passed over standard appeared to 7 schools among 11 schools. HCHO was exceeded 4 schools by standard that excess and certainly interrelation between school's establishment year and facilities of construction was detected. PM10 was exposed all schools by fitness in standard. TVOC appeared that 9 schools among 11 measurement school was exceeded health effect standard of Japan.

An Study on Estimating Cargo Handling Equipment Emission in the Port of Incheon (인천항 하역장비 대기오염물질 배출량 산정 연구)

  • Zhao, Ting-Ting;Pham, Thai-Hoang;Lee, Hyang-Sook
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.21-38
    • /
    • 2020
  • Currently, in-port emissions are a serious problem in port cities. However, emissions, especially non-greenhouse gases, from the operation of cargo handling equipment (CHE) have received significant attention from scientific circles. This study estimates the amount of emissions from on-land port diesel-powered CHE in the Port of Incheon. With real-time activity data provided by handling equipment operating companies, this research applies an activity-based approach to capture an up-to-date and reliable diesel-powered CHE emissions inventory during 2017. As a result, 105.6 tons of carbon monoxide (CO), 243.2 tons of nitrogen oxide (NOx), 0.005 tons of sulfur oxide (Sox), 22.8 tons of particulate matter (PM), 26.0 tons of volatile organic compounds (VOCs), and 0.2 tons of ammonia (NH3) were released from the landside CHE operation. CO and NOx emissions are the two primary air pollutants from the CHE operation in the Port of Incheon, contributing 87.71% of the total amount of emissions. Cranes, forklifts, tractors, and loaders are the four major sources of pollution in the Port of Incheon, contributing 84.79% of the total in-port CHE emissions. Backward diesel-powered machines equipped in these CHE are identified as a key cause of pollution. Therefore, this estimation emphasizes the significant contribution of diesel CHE to port air pollution and suggests the following green policies should be applied: (1) replacement of old diesel powered CHE by new liquefied natural gas and electric equipment; (2) the use of NOx reduction after-treatment technologies, such as selective catalytic reduction in local ports. In addition, a systematic official national emission inventory preparation method and consecutive annual in-port CHE emission inventories are recommended to compare and evaluate the effectiveness of green policies conducted in the future.

A Study on the Removal Efficiency of Harmful Pollutants in the Cooking Chamber (조리실내의 유해오염물질 제거율에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.149-156
    • /
    • 2016
  • The purpose of this study is to reduce the contaminants (total volatile organic compounds (TVOCs), fine particle, odor and total airborne bacteria) during cooking process in cooking chamber, and to decrease the health damage in indoor space that has bad work environment. In order to solve the shortcomings of existing air purifiers and remove all kinds of pollutants effectively, this study focused on the development of indoor air purifiers which are made of bar type. Bio-ceramics filter which combines activated carbon and loess. The air cleaners developed with 4 measuring items including TVOCs, particulate matter, complex odor and total airborne bacteria were measured comparing their pre-service test to their post-service test after a period of time. The measured results showed higher removal efficiency of 91.02% as the concentration of TVOCs was reduced from $2,500{\mu}g/m^3$ to $223{\mu}g/m^3$. Second, the particulate matter removal ratio was 97.51% efficient with average concentration of $26.68{\mu}g/m^3$. Third, the odor showed 95.20% reduction as air dilution ratio averaged out at 144. Last, total airborne bacteria was eliminated by over 94% showing the changeable concentration from $787{\sim}814CFU/m^3$ to $47{\sim}40CFU/m^3$. In addition, the removal rate of harmful pollutants is excellent, and it is expected that the environment of the existing poor cooking room will be greatly improved by using the developed air purifier in combination with the ventilation device and the stove hood.

Assessment of Indoor Air Quality and the Eye Symptom of Occupants in Newly-built Office Building after Planting Indoor Plants (신축사무실 내 식물 적용 후 재실자 안구 증상 및 실내공기질 평가)

  • Kim, Hyojin;Kim, Ho-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.21 no.3
    • /
    • pp.265-274
    • /
    • 2016
  • Purpose: The aim of this study was to evaluate relationship between worker's ophthalmoxerosis symptom and IAQ (Indoor Air Quality) variation after planting indoor plants at newly-built office building. Methods: We selected a new office building located in Sejong-si and occupants who work in the Office for study. The indoor air pollutant was investigated according to applying indoor plants. The indoor air quality of the new building was evaluated by measuring volatile organic compounds (VOCs), aldehydes, temperature and humidity. The level of dry eye symptoms was classified into normal, mild, moderate and severe by using the Ocular Surface Disease Index (OSDI). Results: There was VOCs' reduction effect according to placing indoor plants because the concentration of VOCs in newly-built government office (Sejong-si) was highly decreased when the indoor plants was placed at the office. The occupants' SBS (Sick Building Syndrome) symptoms score was gradually decreased in accordance with applying indoor plants. However, SBS symptoms score was increased when the office was not applied indoor plants. There was not statistical significance in workers' dry eye questionnaire results. Conclusions: There was reduction effect of indoor air pollutant in applied indoor plants office. Also, in case of questionnaire results of ophthalmoxerosis and SBS (Sick Building Syndrome) symptoms score were showed positive effect. This study is needed longer-term study because of complements of difference of individual sensitivity and there are some limitations due to field survey research.

Practical Study of Low-temperature Vacuum Swing Adsorption Process for VOCs Removal (휘발성 유기화합물 제거를 위한 저온 vacuum swing adsorption 공정의 실용화 연구)

  • Jeon, Mi-Jin;Pak, Seo-Hyun;Lee, Hyung-Don;Jeon, Yong-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.332-338
    • /
    • 2017
  • The objective of this work was to study the low temperature vacuum adsorption technology applicable to small and medium scale painting plants, which is the main emission source of volatile organic compounds. The low-temperature vacuum swing adsorption (VSA) technology is the way that the adsorbates are removed by reducing pressure at low temperature ($60{\sim}90^{\circ}C$) to compensate disadvantages of the existing thermal swing adsorption (TSA) technology. Commercial activated carbon was used and the absorption and desorption characteristics of toluene, a representative VOCs, were tested on a lab scale. Also based on the lab scale experimental results, a $30m^3min^{-1}$ VSA system was designed and applied to the actual painting factory to assess the applicability of the VSA system in the field. As a result of lab scale experiments, a 2 mm pellet type activated carbon showed higher toluene adsorption capacity than that of using 4 mm pellet type, and was used in a practical scale VSA system. Optimum conditions for desorption experiments were $80{\sim}90^{\circ}C$ and 100 torr. In the practical scale system, the adsorption/desorption cycles were repeated 95 times. As a result, VOCs discharged from the painting factory can be effectively removed upto 98% or more even after repeated adsorption/desorption cycles when using VSA technology indicating potential field applicabilities.

Characteristics on Chemical Activation and VOCs Adsorption of Activated Carbon according to Mixing Ratio of Anthracite and Lignite (활성탄 제조시 유·무연탄 혼합에 따른 화학적 활성화 및 휘발성유기화합물 흡착 특성)

  • Cho, Joon-Hyung;Kang, Sung-Kyu;Kang, Min-Kyoung;Cho, Kuk;Oh, Kwang-Joong
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.364-377
    • /
    • 2017
  • In this study, to improve the low surface area of domestic anthracite as raw materials of activated carbon, characteristics on chemical activation and VOCs adsorption of activated carbon according to mixing ratio of anthracite and lignite. For these, properties of raw materials, parameter characteristics of preparation processes for activated carbon, and VOCs adsorption characteristic of the prepared activated carbon are analyzed. The experimental results showed that, the domestic anthracite had disadvantages of high contents for ash and lead, arsenic, which were exceeded for the heavy metal limits, in the properties of raw materials. To improve these diadvantages, using the mixing ratio of anthracite and lignite, and the optimum conditions for pretreatment, activation, washing, and pellitization process, the activated carbon had a range of BET (Brunauer-Emmett-Teller) surface area of $1,154{\sim}1,420m^2g^{-1}$ with mesopore development and hydrophobic surface property. The carbons were satisfied with the quality standard for granular activated carbon, and had similar physicochemical properties with the commercial activated carbon. The minimum mixing condition for commercial VOCs activated carbon performance must have the caloric value of above $5,640kcal\;kg^{-1}$, and the carbon had higher adsorption capacity with order of xylene > toluene > benzene according to more higher molcular weight and hydrophobic property.

The Preparation of $TiO_2$ Coated Activated Carbon Pellets Driven by LED and Removal Characteristics of VOCs (LED구동 $TiO_2$ 코팅 활성탄소 펠렛 제조 및 VOCs 제거 특성)

  • Kim, Yesol;Kim, Do Young;Jung, Min-Jung;Kim, Min Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.314-319
    • /
    • 2013
  • In this study, nitrogen doped $TiO_2$ ($N-TiO_2$) coated on an activated carbon pellet (ACP) was prepared using sol-gel and the solid state heat treatment of urea to improve the removal property of volatile organic compounds (VOCs). To explore the visible light photocatalytic activity of the ACP under the light emitting diods (LED), the removal property of benzene gas was characterized by gas chromatography. The SEM and BET results show that the increment of titanium tetra isopropoxide contents leads to the increased $TiO_2$ coating amount of ACP surface and decreased specific surface area. From the results of benzene gas removal, the breakthrough time of ACP10 increased about 2 times compared to that of the ACP. The improved performance was attributed to the $N-TiO_2$ coating on ACP surface, which could be more effective to remove benzene gas under the condition of LED lamp.

Effect of Dietary Yeast (Saccharomyces exiguus) on Growth Performance, Cecal Microflora and Fecal Ammonia Gas in Broiler Chickens (효모(Saccharomyces exiguus)의 급여가 육계 생산성, 맹장내 미생물 및 분내 암모니아 가스 발생에 미치는 영향)

  • Kim, D.W.;Jang, B.G.;Kim, J.H.;Yu, D.J.;Kang, K.H.;Kang, H.G.;Na, J.C.;Kim, S.H.;Lee, D.S.;Suh, O.S.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.2
    • /
    • pp.137-141
    • /
    • 2007
  • This experiment was conducted to investigate the effects of dietary yeast (Saccharomyces exguus) supplementation on growth performance, cecal microflora and fecal ammonia gas in broiler chicks. A total of two hundred seventy, 1-d-old male broiler chicks (Ross strain) were randomly allotted to nine pens (replicates), 30 birds per pen. There were three dietary treatments with three replicates. The treatments were control (virginiamycin 0.05%+salinomycin 0.03%), Saccharomyces exguus 0.5 and 1.0%. Total body weight gain were significantly higher in Saccharomyces exguus1 1.0% treatment than the control (P<0.05). Although not significant, the yeast supplementation tended to improve the feed conversion ratio. No significant differences were observed on the numbers of cecal E. coli, Salmonella and Lactobacillus in yeast treatments compared to those of control. The production of fecal ammonia gas was significantly lower in yeast treatments than the control (P<0.05). The concentrations of fecal short chain fatty acids and volatile organic compounds were not different among the groups. These results suggest the possibility that yeast (Saccharomyces exguus) could be used as the alternative of antibiotic growth promoters by improving the performance of broiler chicks. In addition, dietary yeast could improve the environment of broiler houses by reducing fecal ammonia production.

Exposure Assessment of Hazardous gases in Confined Spaces (밀폐공간 종류별 유해가스 발생 농도 평가)

  • Park, Hyunhee;Yoo, Kye-mook;Ham, Seung-hon;Chung, Kwang-Jae;Shin, Min-a;Lee, Koo-yong;Jang, Kyung-jo;Yoon, Chung-sik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.4
    • /
    • pp.381-389
    • /
    • 2009
  • Confined spaces are inherently dangerous workplace and many fatal and nonfatal accidents have been reported. Even though these accidents occur in various kinds of confined spaces, there has rarely been reported on the health hazard agent, i.e., the types of gases and their concentration ranges. Therefore in this study, we evaluated several toxic and asphyxiating gas concentrations in various confined spaces. We surveyed 57 manholes, 3 sewage treatment plants, 2 yellow radish manufacturing companies and 7 barges to measure the concentrations of oxygen($O_2$), hydrogen sulfide($H_2S$), carbon monoxide(CO), ammonia($NH_3$). Lower Explosion Limits(LEL) and Volatile Organic Compounds (VOCs). Those four types of confined spaces occupies 56% of accidents during last 9 years in Korea. In 57 manholes, the concentration varied according to the types of manholes; rainfall and sewage, and by location; residential and industrial areas. Sewage manhole in industrial area was evaluated as the most hazardous than other types of manhole like rainfall manholes, residential sewage manholes. The highest $H_2S$ concentration and the lowest $O_2$ concentration at sewage manhole in industrial area were 300 ppm, 8.7% respectively. In 3 sewage treatment plants, $H_2S$ and $NH_3$ concentrations were reached up to the 500 ppm and 200 ppm respectively. Two yellow radish manufacturing companies showed the concentrations of 316 ppm, 505.2 ppm, 90 ppm and 15.7% for $H_2S$, CO, VOCs and $O_2$, respectively. Seven barges showed 15.9%~20.9% oxygen concentration. Gas species and concentration ranges varied by the types and location of confined spaces; CO, $H_2S$, $O_2$ could be hazardous in manhole, especially manhole connected to sewage plants. CO, $H_2S$, LEL, $O_2$, $NH_3$ should be controlled in sludge silo and sluge pumping confined spaces in sewage treatment plant. The activity of lifting out radish from the storage tank was evaluated more hazardous rather than the other activities in yellow radish manufacturing industry. The employers must conduct the survey to identify all possible confined spaces in their local workplace prior to performing the tasks. At the national level to reduce the accidents in the confined spaces, we suggest that systemic approach and active education program including possible hazards, standard operation procedures, ventilation plan, and personal protective equipment in confined spaces should be implemented.