• Title/Summary/Keyword: Volatile Fatty Acid (VFA)

Search Result 139, Processing Time 0.033 seconds

Roughage Value of Deepstacked Rice Hulls-bedded Broiler Litter in Sheep (퇴적발효 육계분의 면양에서의 조사료적 가치 평가)

  • Kwak, W.S.;Baek, Y.H.;Ji , K.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.201-208
    • /
    • 2004
  • This study, in which sheep were used as models for beef cattle, was conducted to determine the effect of replacing 100% of rice straw with deepstacked broiler Iitter(BL) as a roughage source on total tract apparent digestibility, digestible nutrient intake, ruminal and blood parameters, and N balance of sheep. Under the conventional formulated mix-rice straw(60: 40) feeding system(control), replacement of rice straw with BL resulted in similar(P> 0.05) total tract apparent digestibilities of fiber and organic matter, similar(P> 0.05) intake of digestible NDF, ADF and organic matter, and higher(P <0.05) intake of digestible crude protein. Feeding BL instead of rice straw resulted in 10wer(P <0.05) ruminal pH, higher(P <0.05) $NH^3-N$ concentration and similar(P> 0.05) rominal volatile fatty acid percentage and blood urea concentration. In a N balance study, increased(P<0.05) N intake for the BIAed group induced higher(P <0.05) quantities(g/d) of fecal and urinary N excretion, bodily N absorption, and N retention. It was concluded that deepstacked BL fiber was comparable to rice straw fiber as a roughage source and BL protein was also favorably utilized within the body of ruminant.

Effects Microbial Addition and Incubation Temperatures on Odor of Pig Manure as Fertilizer on Grass and Crop Fields (초지 및 농경지에 살포되는 돼지 분뇨의 냄새에 미생물 첨가 및 분뇨 배양온도가 미치는 효과)

  • Hwang, Ok Hwa;Park, Sung Kwon;Han, Deug Woo;Lee, Sang Ryoung;Kwag, Jeong Hoon;Cho, Sung Back
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.2
    • /
    • pp.129-134
    • /
    • 2016
  • Odor in pig manure affects the distribution of the manure over grass and crop fields as fertilizer. The objective of this study was to investigate the effect of different types of microbes (Saccharomyces cerevisiae, Bacillus subtilis and Rodobacter capsulata) and incubation temperatures ($20^{\circ}C$ and $35^{\circ}C$) on the levels of odorous compounds in pig manure. Pig manure was incubated with 0.03% microbes (v/v) at temperatures of $20^{\circ}C$ or $35^{\circ}C$. At incubation temperature of $20^{\circ}C$, the addition of Rodobacter capsulata significantly (p<0.05) decreased the levels of indoles and volatile fatty acid (VFA). At incubation temperature of $35^{\circ}C$, the addition of any microbes of the three used in this study did not significantly (p>0.05) affect the levels of odorous compounds. When incubation temperature was increased from $20^{\circ}C$ to $35^{\circ}C$, levels of odorous compounds were significantly (p<0.05) increased. Taken together, these results suggest that Rodobacter capsulata could be utilized to reduce odor from pig manure in the spring and fall when the average temperature is around $20^{\circ}C$. However, alternative odor-reducing technology is needed to be developed to apply onto pig manure during the hot summer season ($35^{\circ}C$).

The Effect of Moisture Control on Fermentation Characteristics of Barley and Rye Silages (수분 조절이 보리와 호밀 silage의 발효특성에 미치는 영향)

  • Lee, Jong-Chan;Kim, Sam-Churl
    • Journal of agriculture & life science
    • /
    • v.44 no.1
    • /
    • pp.25-32
    • /
    • 2010
  • This study examined the effect of moisture level at ensiling on fermentation characteristics of barley and rye silage. The moisture levels, 60 (low; LM), 70(medium; MM) and 80% (high; HM), were controled by adding water or pre-wilting. Barley silage had higher pH and latate:acetate ratio in LM than the other treatments, but those of rye in MM were higher. The concentrations of lactate, total FA and acetate in HM were higher than the other treatments, but propionate concentration in LM was higher than HM. Total N concentrations of barley and rye were highest in MM and LM, respectively. The $NH_3-N$ concentration and total N:$NH_3-N$ ratio of barley were higher in HM than those in LM and MM. With increasing moisture content, buffering capacity of barley and rye silages increased, whereas decreased by increase of pH. There was a negative correlation between moisture content vs. pH of barley and rye silages. However, moisture content vs. the concentrations of total VFA and $NH_3-N$ and the ratio of total N:$NH_3-N$ had a positive correlation. Tn conclusion, the ideal moisture content of barley and rye for silage was 70-80%, but silage quality could be rapidly decreased by pre-wilting to 60% moisture content.

Effects of L-glutamine supplementation on degradation rate and rumen fermentation characteristics in vitro

  • Suh, Jung-Keun;Nejad, Jalil Ghassemi;Lee, Yoon-Seok;Kong, Hong-Sik;Lee, Jae-Sung;Lee, Hong-Gu
    • Animal Bioscience
    • /
    • v.35 no.3
    • /
    • pp.422-433
    • /
    • 2022
  • Objective: Two follow-up studies (exp. 1 and 2) were conducted to determine the effects of L-glutamine (L-Gln) supplementation on degradation and rumen fermentation characteristics in vitro. Methods: First, rumen liquor from three cannulated cows was used to test L-Gln (50 mM) degradation rate and ammonia-N production at 6, 12, 24, 36, and 48 h after incubation (exp. 1). Second, rumen liquor from two cannulated steers was used to assess the effects of five levels of L-Gln including 0% (control), 0.5%, 1%, 2%, and 3% at 0, 3, 6, 12, 24, 36, and 48 h after incubation on fermentation characteristics, gas production, and degradability of nutrients (exp. 2). Results: In exp. 1, L-Gln degradation rate and ammonia-N concentrations increased over time (p<0.001). In exp. 2, pH was reduced significantly as incubation time elapsed (p<0.001). Total gas production tended to increase in all groups as incubation time increased. Acetate and propionate tended to increase by increasing glutamine (Gln) levels, whereas levels of total volatile fatty acids (VFAs) were the highest in 0.5% and 3% Gln groups (p<0.001). The branched-chain VFA showed both linear and quadratic effects showing the lowest values in the 1% Gln group particularly after 6 h incubation (p<0.001). L-Gln increased crude protein degradability (p<0.001), showing the highest degradability in the 0.5% Gln group regardless of incubation time (p<0.05). Degradability of acid detergent fiber and neutral detergent fiber showed a similar pattern showing the highest values in 0.5% Gln group (p<0.10). Conclusion: Although L-Gln showed no toxicity when it was supplemented at high dosages (2% to 3% of DM), 0.5% L-Gln demonstrated the positive effects on main factors including VFAs production in-vitro. The results of this study need to be verified in further in-vivo study.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

The Effect of Alcohol Fermented Feedstuff Made of Byproducts on In vitro Fermentation Characteristics and NDF Disappearance in the Rumen (조사료 대용 산업부산물을 이용한 알코올 발효사료가 In vitro 반추위내 발효특성 및 NDF 분해율에 미치는 영향)

  • Kim, Byong-Wan;Lin, Guang-Zhe;Park, Byung-Ki;Kim, Jong-Duk;Shin, Jong-Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.27 no.4
    • /
    • pp.323-334
    • /
    • 2007
  • An in vitro study was conducted to examine the influence of alcohol-fermented feedstuff formulated with byproducts on the fermentation characteristics and NDF disappearance in the rumen. Dietary treatments were either a soybean curd-based alcohol-fermented feedstuff (AFS) or brewery grain-based alcohol-fermented feedstuff (AFB). The AFS and AFB are composed of 50% commercial beef cattle feed, 50% soybean curd dreg, 5% molasses and 0.5% yeast and 25% commercial beef cattle feed, 25% brewery grain, 25% soybean curd dreg, 25% corn grit, 5% molasses and 0.5% yeast, respectively. The change of ammonia, pH alcohol, volatile fatty acids, and NDF disappearance were measured at 0, 2, 4, 8 and 12 hr after in vitro incubation in the rumen. After 2 hr incubation, higher ammonia concentrations were resulted in AFS (12.47 mg/dl) and AFB (12.85 mg/dl) compared to control (11.84 mg/dl) (p<0.05). Ruminal pH of AFS and AFB were significantly higher than control during 1 to 6 hr fermentation, but the pH of AFS and AFB were decreased after 6 hr. At 12 hr fermentation, the alcohol concentration of AFS and AFB was significantly increased by 43.9% and 48.0%, respectively. The acetate concentration was rapidly decreased in control, while the concentration was slowly decreased in AFS and AFB with increasing the fermentation time. Lower concentrations propionate and butyrate were observed in AFS and AFB during every fermentation time (p<0.05). The NDF disappearance was significantly lower in AFS and AFB after 4 hr fermentation. These results suggest that alcohol fermented feedstuff can control the fermentation pattern in the rumen.

Nutritional Studies for Improvement of Feeding on Korean Native Goat - Absorption of Nutrients in Rumen - (한국재래산양(韓國在來山羊)의 사양개선(飼養改善)에 관(關)한 연구(硏究) - 제일위((第一胃)에서의 영양소(營養素) 흡수(吸收)에 대(對)하여 -)

  • Kwon, Soon Ki
    • Korean Journal of Agricultural Science
    • /
    • v.9 no.1
    • /
    • pp.284-302
    • /
    • 1982
  • Development of protein resources as food has been a big issue especially in Southeast Asia region, and intake of protein is also insufficient in Korea. To cope with this shortage of protein resources and its improvement together with increased production of high nutritive animal protein, studies were carried out on feeding of Korean native goats. In the experiments were made absorption of carbohydrate and volatile fatty acid in miniature rumen, and absorption of amino acid in rumen as in vivo were conducted as part of studies on nutritional absorption in rumen. Those nutritional for improvement of feeding and management as described above are summarized as following. 1. According to the result of test on the nutritional absorption of native goat by means of miniature rumen method, absorption ratio of VFA measured at 0.5, 1 and 2 hours after injection of nutrition showed propionic acid 70-86%, acetic acid 74-87%, and lactic acid 76-89%. In the absorption of organic substances, ethyl alcohol of 0.5% showed 29-87% and lactic acid of 0.1M showed 12-27% of absorption ratio. 2. Result of absorption measurement in rumen from L-type free amino acid injection in the content of rumen vein showed lower rate at menthionine-free group compared to whole-egg amino acid injection in the content of rumen vein showed lower rate at methioine-free group compared to whole-egg amino acid group, and high absorption ratio was observed at methionine 3 times group and urea added group. Deficiency of methionine caused no change of the content in mucous membranes. 3. Absorption of amino acid in rumen muscular layer showed equal tendency as in the mucous membrane without exerting any influence of methionine deficiency. At the methionine3-times group, content of methionine and glutamine were increased by 14.7 and 4.4 times as compared to whole-egg amino acid group, an absorption ratio of glutamine, proline and valine were increased at urea added group. 4. In general, concentration of amino acid in rumen vein plasma was lower than in rumen mucous membrane and muscular layer. Absorption ratio of amino acid is decreased due to methionine deficiency, and tripling of methionine or urea adding caused increment of amino acid. Absorption pattern is thus varied depending on the composition of amino acid. 5. At the urea added group, content of ammonia-N, amino-N and urea were increased in rumen muscular layer. As the inside of goat's rumen was unable to clean thoroughly, investigation was made on remaining bacteria, however, variation of ammonia-N was affected by these bacterial content. 6. Variation in rumen structure by differential absorption of amino acid was observed by general microscope and fluorescent microscope. According to the result of observation in the methionine 3 times group, single cylinder epithelium of mucous membrane showed rather thin, and it was thick at urea added group though no significant differences existed among test groups in submucous membrane and muscular layer.

  • PDF

Characteristics of Carcass and Meat Quality for Landrace, Yorkshire, Duroc and their Crossbreeds (랜드레이스, 요크셔, 듀록 및 교잡종에 대한 도체 및 육질특성)

  • 김진형;박범영;유영모;조수현;황인호;성필남;하경희;이종문
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • In this study, changes of ammonia, alcohol and volatile fatty acid(VFA) concentrations or pH in in vitro ruminal fluid were studied to determine the effects of alcoholic feeds on in vitro ruminal fermentation characteristics. To formulate the alcoholic feeds, alcohol was added to commercial formulated feed at the levels of 1, 3, and 5 %. Experiments were done with four treatment groups, control(commercial feed), AF-1(commercial feed+1% alcohol), AF-3(commercial feed+3% alcohol), and AF-5(commercial feed+5% alcohol). Ammonia concentrations of AF-1 and AF-5 were significantly lower than that of control for the 12h incubation(p<0.05). Ruminal alcohol concentration was increased with the addition level of alcohol increased(p<0.05). TVFA concentrations of AF-1, AF-3 and AF-5 were significantly higher than those of control at 12h(p<0.05). Significant decrease of molar percentage of acetate was observed in control from 8 to 12h incubation, but molar percentage of acetate for AF-1, AF-3 and AF-5 was constant. Molar percentage of propionate was increased in control compared with AF-1, AF-3 and AF-5 from 8 to 12h incubation(p<0.05). Molar percentages of butyrate and valerate were higher in AF-1, AF-3 and AF-5 than in control(p<0.05). Molar percentage of caproate for AF-1, AF-3 and AF-5 was 0.05, 0.58 and 0.47M% at 8h, respectively, but that was not detected for control. Present results may indicate that the alcoholic feeds show positive effects on in vitro ruminal ammonia, alcohol and VFA concentrations or pH. Furthermore, the results of this study implies that the addition level of 5% could be more effective to ruminal fermentation than other addition levels.

Evaluation the Feed Value of Whole Crop Rice Silage and Comparison of Rumen Fermentation according to Its Ratio (신규 조사료원 사료용 벼 사일리지의 사료가치 평가 및 급여 비율에 따른 반추위 발효성상 비교)

  • Park, Seol Hwa;Baek, Youl Chang;Lee, Seul;Kim, Byeong Hyeon;Ryu, Chae Hwa
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.4
    • /
    • pp.236-243
    • /
    • 2020
  • This study was to evaluate the feed value of whole crop rice silage (WCRS) and to investigate a suitable ratio of the WCRS and concentrate by an analysis of rumen fermentation. A total of 6 treatments were used according to WCRS: concentrate ratio on in vitro rumen fermentation: T1 (100:0), T2 (60:40), T3 (40:60), T4 (20:80), T5 (10:90), and T6 (0:100). The ruminal pH, total gas emission, ammonia nitrogen, and volatile fatty acid (VFA) were determined as fermentation parameters. Total nutrients digestibility trial was conducted by 4 treatments according to WCRS: concentrate ratio at 40:60 (W40), 20:80 (W20), and 10:90 (W10), respectively. Feed value was analyzed according to AOAC (2019) and nutrient digestibility was calculated based on NRC (2001). The levels of crude protein (CP), crude fat, and neutral detergent fiber of the WCRS were 12.29%, 1.67%, and 59.79%, respectively. It was found to be 51.49% as a result of predicting the total digestible nutrient of WCRS using the NRC (2001) model. In vitro rumen fermentation, T4, T5, and T6 treatments showed a greater gas emission and total VFA concentration compared with other treatments (p<0.05). Acetate and acetate to propionate ratio of T4, T5, and T6 were significantly higher than other treatments (p<0.05). There was a significant difference in the level of propionate and butyrate according to the WCRS: concentrate ratio (p<0.05). The digestibility of dry matter and CP was significantly lower in W40 than in other treatments (p<0.05); however, there was no difference in W20 and W10. In conclusion, the 20:80 (WCRS: concentrate) is beneficial for stabilizing the rumen that does not inhibit rumen fermentation and nutrient digestion. This ratio might have a positive effect on the economics of farms as a valuable feed.