• Title/Summary/Keyword: Volatile

Search Result 5,283, Processing Time 0.034 seconds

A Stable Evidence Collection Procedure of a Volatile Data in Research (휘발성 증거자료의 무결한 증거확보 절차에 관한 연구)

  • Kim, Yong-Ho;Lee, Dong-Hwi;J. Kim, Kui-Nam
    • Convergence Security Journal
    • /
    • v.6 no.3
    • /
    • pp.13-19
    • /
    • 2006
  • I would like to explain a method how to get important data from a volatile data securely, when we are not available to use network in computer system by incident. The main idea is that the first investigator who collects a volatile data by applying scripts built in USB media should be in crime scene at the time. In according to volatile data, he generates hash value, and gets witness signature. After that, he analyses the volatile data with authentication in forensics system.

  • PDF

Performance and Energy Optimization for Low-Write Performance Non-volatile Main Memory Systems (낮은 쓰기 성능을 갖는 비휘발성 메인 메모리 시스템을 위한 성능 및 에너지 최적화 기법)

  • Jung, Woo-Soon;Lee, Hyung-Gyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.5
    • /
    • pp.245-252
    • /
    • 2018
  • Non-volatile RAM devices have been increasingly viewed as an alternative of DRAM main memory system. However some technologies including phase-change memory (PCM) are still suffering from relatively poor write performance as well as limited endurance. In this paper, we introduce a proactive last-level cache management to efficiently hide a low write performance of non-volatile main memory systems. The proposed method significantly reduces the cache miss penalty by proactively evicting the part of cachelines when the non-volatile main memory system is in idle state. Our trace-driven simulation demonstrates 24% performance enhancement, compared with a conventional LRU cache management, on the average.

The Changes of Non-Volatile Organic Acids in Low Salt Fermented Squid Affected by Adding to Squid Ink (오징어 먹즙 첨가에 따른 저염 오징어 젓갈의 비휘발성 유기산 변화)

  • Oh, Sung-Cheon;Cho, Jung-Soon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2003
  • Squid ink was added to the low salt fermented squid by 4% of concentration and ripened at 10$^{\cric}C$ for 6 weeks and at 20$^{\cric}C$ for 28 days. The effect of the squid ink on the non-volatile organic acids of low salt fermented squid were investigated. The results are as follows; The non-volatile organic acid in the salt fermented squid without addition of the squid ink was examined and the result showed that lactic and acetic acids were the major organic acids even if very small amount of citric and oxalic acids were detected. In the squid ink added to the low salt fermented squid, total quantity of non-volatile organic acid in the latter part of the ripening was lower than no treatment groups.

Effect of Temperature on the Production of Free Organic Acids during Kimchi Fermentation

  • Park, Young-Sik;Ko, Chang-Young;Ha, Duk-Mo
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.266-269
    • /
    • 1993
  • The production of free non-volatile and volatile organic acids in Kimchi during fermentations at 30, 20 and $5^{\circ}C$, were determined by gas chromatography. The order in the amount of non-volatile organic acid, soon after preparation, was malic, citric, tartaric, pyroglutamic, oxalic, lactic, succinic and ${\alpha}-ketoglutaric$ acids. The major non-volatile acids at the optimum ripening time were malic, tartaric, citric and lactic acids, and as the temperature was lowered, the amount of lactic, succinic, oxalic, pyroglutamic and fumaric acids increased, while that of malic and tartaric acids decreased. The order in the amount of volatile acids at the beginning was acetic, butyric, propionic and formic acids. Among these acids, acetic acid was significantly increased in its amount during fermentation and the Kimchi fermented at low temperature produced more acetic acid than that fermented at high temperature.

  • PDF

Concentration of Volatile Organic Compounds at Main Stream and Branch Stream of Kumho River (금호강 본류와 지류에서의 휘발성 유기화합물질 농도)

  • 김용혜;장봉기;홍성철;이종영
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.1
    • /
    • pp.135-146
    • /
    • 1998
  • In this study, we investigated to measured concentration, seasonal characteristics and load quantity of volatile organic compounds(VOCs) for 11 sites in the main stream and 8 sites in the branch stream of Kumho river, during from October 1995 to April 1997. As a results, the small amount of volatile compounds, such as dichloromethane, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, p-xylene and 1,3,5-trimethyl-benzene were detected from the main stream of Kumho river. Also detected to dichloromethene, chloroform, toluene, benzene, trichloroethene, tetrachloroethene, ethylbenzene, p-xylene, 1,3,5-trimethylbebzene and 1,2,4-trimethylbenzene in the branch stream, and dichloromerhane, chloroform and toluene were detected to all site of sampling. And seasonal variation of volatile organic compounds showed higher concentration in the July 1996 as a winter season than January 1997 as a summer season in most places. Also the load quantity of volatile organic compound at Gangchang site in the last downstream of Kumho river, was in order of chloroform > dichloromethane > toluene > trichloroethene.

  • PDF

THE COMPARISONS OF VOLATILE OILS OF FLUE-CURED TOBACCO PRODUCED IN KOREA AND IN THE UNITED STATES (한미산 황색종 잎담배의 휘발성 정유성분 비교연구)

  • 장기운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.7 no.2
    • /
    • pp.151-167
    • /
    • 1985
  • Generally, the same quality tobacco may give similar concentration of each chemical component. This research investigation was studied to obtain the differences in concentrations of volatile oil compounds in physically similar tobacco produced in different environment and managements-in Korea and in the United States. The flue-cured leaf tobacco produced in Korea and America was regraded to B3L and P3L by American grading system and analyzed for volatile oils relating to tobacco flavor and aroma. Sixty compounds of the more than 100 peaks distinguishable on the total neutral volatile oils were identified by G5-MS and quantified. Their concentrations are compared between B3 L and P3L produced in Korea and in the United States. The most volatile oil concentrations of B3 L and P3L grade tobacco arc higher in American than in Korean. Only a few components such as benzaldehyde, pulegonc, 4, 6, 9 - megastigmatriene - 3 - one, and coumaran are less in American.

  • PDF

Volatile Flavor Components of Traditional and Commercial Kochujang (재래식과 공장산 고추장의 향기성분)

  • Kim, Young-Soo;Oh, Hoon-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.494-501
    • /
    • 1993
  • The volatile flavor components of traditional and commercial kochujang were collected by simultaneous steam distillation-extraction (SDE) method. Essential oils were analyzed by gas chromatography (GC) and combined gas chromatography-mass spectrometry (GC/MS). Tested kochujang included Sunchang kochujang prepared with glutinous rice, Boeun kochujang prepared with barley, Sachun kochujang prepared with wheat and commercial kochujang. One hundred and twelve volatile flavor components which included 30 esters, 15 alcohols, 14 aldehydes, 13 acids, 9 ketones, 7 alkenes, 6 phenols, 3 alkanes, 3 pyrazines, 2 benzenes and 2 furans were identified. The major volatile compounds in traditional and commercial kochujang were 2-methyl propanal and ethanol, which represented $21{\sim}36%\;and\;2{\sim}44%$ of total GC peak area, respectively.

  • PDF

Comparison of Volatile Aroma Components from Saussurea lappa C.B. Clarke Root Oils

  • Chang, Kyung-Mi;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.13 no.2
    • /
    • pp.128-133
    • /
    • 2008
  • The volatile flavor components were isolated from the roots of Saussurea lappa C.B. Clarke produced in Korea and China by the hydro distillation, and were analyzed by gas chromatography-mass spectrometry (GC/MS). 63 aroma compounds representing 87.47% of the total peak area were tentatively identified, including 13 alcohols (22.56%), 26 hydrocarbons (21.78%), 4 aldehydes (21.24%), 11 ketones (18.04%), 1 oxide (0.52%), 3 esters (0.16%), 1 carboxylic acid (0.02%) and 4 miscellaneous components (3.15%). 46 volatile flavor components of imported S. lappa C.B. Clarke constituted 65.69% of the total volatile composition were tentatively characterized, consisting of 1 aldehyde (23.32%), 24 hydrocarbons (16.69%), 10 ketones (15.84%), 7 alcohols (8.92%), 1 oxide (0.83%), 2 esters (0.07%) and 1 acid (0.02%). The predominant components of both essential oils were (7Z,10Z,13Z)-7,10,13-hexadecatrienal and dehydrocostuslactone.

GC-MS Analysis of the Extracts from Korean Cabbage (Brassica campestris L. ssp. pekinensis ) and Its Seed

  • Hong, Eunyoung;Kim, Gun-Hee
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.3
    • /
    • pp.218-221
    • /
    • 2013
  • Korean cabbage, a member of the Brassicaceae family which also includes cauliflower, mustard, radish, and turnip plants, is a crucial leafy vegetable crop. Korean cabbage is harvested after completion of the leaf heading process and is often prepared for use in "baechu kimchi", a traditional Korean food. Many of the components in Korean cabbage are essential for proper human nutrition; these components can be divided into two groups: primary metabolites, which include carbohydrates, amino acids, fatty acids, and organic acids, and secondary metabolites such as flavonoids, carotenoids, sterols, phenolic acids, alkaloids, and glucosinolates (GSLs). Using gas chromatography-mass spectrometry, this study examined the variety of volatile compounds (including isothiocyanates) contained in Korean cabbage and its seed, which resulted in the identification of 16 and 12 volatile compounds, respectively. The primary volatile compound found in the cabbage was ethyl linoleolate (~23%), while 4,5-epithiovaleronitrile (~46%) was the primary volatile component in the seed.

Analysis of Volatile Compounds in Bulgogi Prepared by Different Heating Procedure

  • Cho, In-Hee;Lee, Hyong-Joo;Kim, Young-Suk
    • Food Science and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.428-432
    • /
    • 2005
  • To compare volatile compounds in bulgogi cooked by different heating procedures, bulgogi was prepared by convection oven, electric pan and charcoal grill. A total of 61 volatile compounds, consisting of 4 pyrazines, 10 sulfur-containing compounds, 7 carbonyls, 7 alcohols, 7 aliphatic hydrocarbons, 25 terpene hydrocarbons, and 1 miscellaneous compound, were tentatively identified in bulgogi cooked by the three heating methods. Comparatively, the difference in volatile compounds identified in bulgogi using the three different heating methods was not significant, except for sulfur-containing compounds and carbonyls which were detected at higher levels in the bulgogi cooked by convection oven than in that cooked by the other two heating methods. On the other hand, some compounds, such as furfural, benzaldehyde, and (E,E)-2,4-decadienal, were detected only in the bulgogi cooked by charcoal.