• Title/Summary/Keyword: Volatile

Search Result 5,296, Processing Time 0.037 seconds

Sensory Characteristics and Volatile Compounds of Cooked Rice according to the Various Cook Method (조리방법에 따른 쌀밥에 관능적 성질 및 휘발성 성분에 관한연구)

  • 송재철
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.142-149
    • /
    • 1999
  • Moisture absorption rate of rice according to the soaking time was higher at $25^{\circ}C$ than 4$^{\circ}C$ and the op-timum soaking time was 1hr at $25^{\circ}C$. When the ratios of added water for rice cooking were 1.3 in an elec-tric cooker and pressure cooker and 1.7 in an Dookbaeki sensory an mechanically evaluation of cooked rice were highly evaluated. The total number of peak on gas chromatography profile were 89 in an press-ure cooker 56 in an electric cooker and 83 in an Dookbaeki and major volatile compounds of cooked rice were aliphatic hydrocarbons cyclic hydrocarbons aromatic hydrocarbons aldehydes alcohols ketones and thiourea. Furan that is in sweety was not detected in volatile components of cooked rice of electric cooker.

  • PDF

Quality Characteristics and Volatile Flavor Components of Cooked Rice, Yenipsambab, with Lotus Leaf Powder (연잎분말을 첨가한 밥의 품질특성 및 연잎쌈밥의 저장 중 향기성분)

  • Park, Bock-Hee;Kim, Sung-Doo;Jeon, Eun-Raye;Cho, Hee-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.27 no.4
    • /
    • pp.374-382
    • /
    • 2012
  • We investigated the quality characteristics and volatile flavor components in yenipsambab prepared with various concentrations of lotus leaf powder. Hunter's color L and a values of yenipsambab decreased with increasing content of lotus leaf powder, whereas b value increased. Moreover, addition of lotus leaf powder resulted in increased hardness, adhesiveness, chewiness, and brittleness compared to control. Major volatile compounds of yenipsambab were ethyl benzene, 1,3-dimethylbenzene, 1,2-dimethylbenzene, and 5-hydroxymethyldihydrofuran-2-one.

Properties of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde to Urea Mole Ratios

  • Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.67-75
    • /
    • 2007
  • As a part of abating the formaldehyde emission of urea-formaldehyde (UF) resin adhesive by lowering formaldehyde to urea (F/U) mole ratio, this study was conducted to investigate properties of UF resin adhesive with different F/U mole ratios. UF resin adhesives were synthesized at different F/U mole ratios of 1.6, 1.4, 1.2, and 1.0. Properties of UF resin adhesives measured were non-volatile solids content, pH level, viscosity, water tolerance, specific gravity, gel time and free formaldehyde content. In addition, a linear relationship between non-volatile solids content and sucrose concentration measured by a refractometer was established for a faster determination of the non-volatile solids content of UF resin. As F/U mole ratio was lowered, non-volatile solids content, pH, specific gravity, water tolerance, and gel time increased while free formaldehyde content and viscosity were decreased. These results suggested that the amount of free formaldehyde strongly affected the reactivity of UF resin. Lowering F/U mole ratio of UF resin as a way of abating formaldehyde emission consequently requires improving its reactivity.

Analysis of the Pultrusion Process of Thermosetting Composites Containing Volatiles (휘발물질이 존재하는 열경화성수지 복합재료의 Pultrusion 공정 해석)

  • 김대환;이우일;김병선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.527-536
    • /
    • 1995
  • Analysis of pultrusion process for the thermosetting composites containing volatiles was performed. Degree of cure, amount of volatile evolved and pulling force were calculated for the processing variables such as die temperature and pulling speed. Cure kinetics was modeled from the data obtained by DSC(Differential Scanning Calorimeter). The volatile evolution kinetics was modeled from the data by DSC as well as TGA(Thermo Gravimetric Analyzer). The cure kinetics and volatile evolution kinetics models were incorporated into the energy equation. The resulting governing equation was solved using finite element method. Pulling force was calculated through the analysis of pressure developed inside the pultrusion die. Experiments were performed and the data were compared with the calculated results. Good agreements were observed.

Feasibility Study of Non-volatile Memory Device Structure for Nanometer MOSFET (나노미터 MOSFET비휘발성 메모리 소자 구조의 탐색)

  • Jeong, Ju Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.41-45
    • /
    • 2015
  • From 20nm technology node, the finFET has become standard device for ULSI's. However, the finFET process made stacking gate non-volatile memory obsolete. Some reported capacitor-less DRAM structure by utilizing the FBE. We present possible non-volatile memory device structure similar to the dual gate MOSFET. One of the gates is left floating. Since body of the finFET is only 40nm thick, control gate bias can make electron tunneling through the floating gate oxide which sits across the body. For programming, gate is biased to accumulation mode with few volts. Simulation results show that the programming electron current flows at the interface between floating gate oxide and the body. It also shows that the magnitude of the programming current can be easily controlled by the drain voltage. Injected electrons at the floating gate act similar to the body bias which changes the threshold voltage of the device.

Prepyrolysis Structural Relaxation of Coal Studied by Differential Scanning Calorimetry and Solvent Swelling

  • Yun, Yongseung;Suuberg, E.M.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.126-131
    • /
    • 1993
  • Differential Scanning Calorimetry (DSC) and solvent swelling technique have been applied for identifying physical transition temperatures in the macromolecular structure of coals. The transition processes seem to be associated with physical relaxation of the coal structure and are irreversible processes. In Pittsburgh No. 8 high volatile bituminous (hvb) coat one physical transition was noted at 250-30$0^{\circ}C$ (at 8$^{\circ}C$/min) without any significant accompanying weight loss. Coals of higher rank than high volatile bituminous, i.e., Upper Freeport medium volatile bituminous (mvb) and Pocahontas No.3 low volatile bituminous (lvb) coals, exhibit structural relaxation just before the major thermal decomposition process and a sharp increase in solvent swellability accompanies this relaxation. In the case of both the Pittsburgh No.8 and the Upper Freeport coat structural relaxations at around 36$0^{\circ}C$ seem to coincide with release of "guest molecules".les".uot;.

  • PDF

Presence of Two Apocarotenoids in Volatile Constituents of Onosma dichroanthum

  • Mousavi, Seyed Pouya;Motamed, Saeed Mohammadi
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.132-135
    • /
    • 2020
  • Volatile constituents obtained by water distillation from the aerial parts and root of Onosma dichroanthum Boiss (Boraginaceae) native to the north of Iran were investigated by GC and GC/MS for the first time. Palmitic acid (39.61%) and decane (31.39%) were the major components in the root while decane (26.26%) and phytol (25.52%) were the predominant constituents in the aerial parts. Ketones, aldehydes, alkanes, fatty acids, oxygenated diterpenes and sesquiterpenes were characterized as the most phytochemicals in the aerial parts. Alkanes and fatty acids were identified as the main groups in the root volatile substances. There were two ketone derivatives, belong to apocarotenoids, in the aerial parts; β-ionone and hexahydrofarnesyl acetone.

Analysis of Volatile Flavor Components of Pimpinella brachycarpa (참나물의 휘발성 향기성분 분석)

  • 송희순;최향숙;이미순
    • Korean journal of food and cookery science
    • /
    • v.13 no.5
    • /
    • pp.674-680
    • /
    • 1997
  • Volatile flavor components of fresh, shady air dried, and presteamed shady air dried Chamnamul (Pimpinella brachycarpa) were collected by simultaneous steam distillation-extraction method, and essential oils were analyzed by gas chromatography-mass spectrometry (GC/MS). Twenty five, 17 and 23 volatile flavor components were identified in essential oils extracted from the fresh, shady air dried, and presteamed shady air dried Chamnamul samples, respectively; however, the kinds of individual components and its percent content of the total volatiles were varied depending on samples. The principal components of Chamnamul were isobutanal, trans caryophyllene, trans ${\beta}$-farnesene, and ${\alpha}$-selinene. Terpenoid compounds reached 44.11%, 33.91% and 72.63% respectively in fresh, shady air dried, and presteamed shady air dried Chamnamul.

  • PDF

Volatile Compounds of Ascidian, Halocynthia roretzi

  • CHOI Byeong-Dae;HO Chi-Tang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.761-769
    • /
    • 1995
  • About 2.1g of pale yellow flavor concentrate was obtained from 10kg of chopped fresh ascidians through a Likens-Nickerson steam distilllation/solvent extraction. These concentrates could be fractionated to neutral $(91.5\%),\;basic\;(1.0\%),\;phenolic\;(3.2\%),\;and\;acidic\;(4.3\%)$ fractions. Total 65 volatile compounds were identified from those concentrates. The neutral fraction was representative flavor fraction which showed a similar flavor of total steam distillates of ascidian. The major compounds $(38.2\%\;of\;neutral\;fraction)$ were identified as carbon atoms 8 to 10 of alcohols. Among these volatile alcohols, 1-octanol, 2,7-decadien-1-o1, 3-octen-l-01, 7-decen-l-ol, and l-decanol were the dominent compounds found in neutral fraction. But the basic, phenolic, and acidic fractions differs from ascidian steam distillates flavor.

  • PDF

Development of an Analytical Approach to Measure Volatile Sulfur Compounds Using a Non-Cryogenic Preconcentration Method (비냉각형 선농축 방식에 의한 대기 중 휘발성 황화합물의 분석방법 개발)

  • 김기현;이강웅
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.5
    • /
    • pp.355-360
    • /
    • 1997
  • The atmospheric concentration of dimethylsulfide (DMS), known as the predominant volatile organic. sulfur compound, is determined at subnanogram level by a combined application of non-cryogenic preconcentration method and gas chromatography with flame photometric detection (GC/FPD). The volatile DMS in air is preconcentrated using a trapping tube containing adsorbent like Molecular Sieve 5A (or gold-coated sands). The tube is then connected to the GC/FPD system via a six-way rotary valve, thermally desorbed at 40$0^{\circ}C$, separated on OV101 column, and detected by a flame photometric detector. The DMS peak elutes at about 2.5 mins and is integrated electronically. The analytical precision, if expressed in terms of relative standard error, is around 5%. The detection limit of our GC/FPD system is ca 1 ng of DMS. Details of our analytical system are presented.

  • PDF