• Title/Summary/Keyword: Void state

Search Result 137, Processing Time 0.027 seconds

Prediction of the Degree of Saturation Using the Soil-Water Characteristic Curves on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 포화도의 예측)

  • Song, Chang-Seob
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.61-69
    • /
    • 2004
  • The aim of the work described in this paper was to confirm the application of the equation of the soil-water characteristic curves on an unsaturated soil. A series of suction test for unsaturated soils was conducted on the selected 4 kinds of soil using modified pressure extractor apparatus. And it was carried out to analyse The experimental parameters which can be describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that The matric suction varied according to the grain size distribution, amount of fine grain particles and void ratio. Also it was found that the residual degree of saturation was decreased with in crease of the void ratio, but the pore size distribution index and air entry value were increased with in crease of the void ratio. And The application of the soil-water characteristic curve equation was confirmed for the various conditions and the various state by the comparison between the measured degree of saturation and the predicted degree of saturation.

Shear wave velocity of sands subject to large strain triaxial loading

  • Teachavorasinskun, Supot;Pongvithayapanu, Pulpong
    • Geomechanics and Engineering
    • /
    • v.11 no.5
    • /
    • pp.713-723
    • /
    • 2016
  • Shear wave velocities of three selected sandy soils subject to drained triaxial compression test were continuously measured using the bender elements. The shear wave velocity during isotropic compression, as widely recognized, increased as confining pressure increased and they were correlated well. However, during drained shearing, the mean effective stress could no further provide a suitable correlation. The shear wave velocity during this stage was almost constant with respect to the mean effective stress. The vertical stress was found to be more favorable at this stage (since confining stress was kept constant). When sample was attained its peak stress, the shear wave velocity reduced and deviated from the previously existed trend line. This was probably caused by the non-uniformity induced by the formation of shear band. Subsequently, void ratios computed based on external measurements could not provide reasonable fitting to the initial stage of post-peak shear wave velocity. At very large strain levels after shear band formation, the digital images revealed that sample may internally re-arrange itself to be in a more uniform loose stage. This final stage void ratio estimated based on the proposed correlation derived during pre-peak state was close to the value of the maximum void ratio.

Design charts for consolidation settlement of marine clays using finite strain consolidation theory

  • Jun, Sang-Hyun;Lee, Jong-Ho;Park, Byung-Soo;Kwon, Hyuk-Jae
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.295-305
    • /
    • 2021
  • In this study, design charts for estimating consolidation settlement are proposed according to finite strain consolidation theory using a nonlinear constitutive relationship equation. Results of parametric sensitivity analysis shows that the final settlement, initial height, and initial void ratio exerted the greatest effect, and the coefficients of the void ratio-effective-stress. Proposed design charts were analyzed for three regions using a representative constitutive relationship equation that enables major dredged-reclaimed construction sites in Korea. The regional design charts can be calculated accurately for the final settlement because it is applied directly to the numerical analysis results, except for reading errors. A general design chart applicable to all marine clays is proposed through correlation analysis of the main parameters. A final self-weight consolidation settlement with various initial void ratios and initial height conditions should be estimated easily using the general design chart and constitutive relationship. The estimated final settlement using the general design chart is similar to the results of numerical analysis obtained using finite strain consolidation theory. Under an overburden pressure condition, design charts for estimating consolidation settlement are proposed for three regions in Korea.

Investigation on effect of neutron irradiation on welding residual stresses in core shroud of pressurized water reactor

  • Jong-Sung Kim;Young-Chan Kim;Wan Yoo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.80-99
    • /
    • 2023
  • This paper presents the results of investigating the change in welding residual stresses of the core shroud, which is one of subcomponents in reactor vessel internals, performing finite element analysis. First, the welding residual stresses of the core shroud were calculated by applying the heat conduction based lumped pass technique and finite element elastic-plastic stress analysis. Second, the temperature distribution of the core shroud during the normal operation was calculated by performing finite element temperature analysis considering gamma heating. Third, through the finite element viscoelastic-plastic stress analysis using the calculated temperature distribution and setting the calculated residual stresses as the initial stress state, the variation of the welding residual stresses was derived according to repeating the normal operation. In the viscoelastic-plastic stress analysis, the effects of neutron irradiation on mechanical properties during the cyclic normal operations were considered by using the previously developed user subroutines for the irradiation agings such as irradiation hardening/embrittlement, irradiation-induced creep, and void swelling. Finally, the effect of neutron irradiation on the welding residual stresses was analysed for each irradiation aging. As a result, it is found that as the normal operation is repeated, the welding residual stresses decrease and show insignificant magnitudes after the 10th refueling cycle. In addition, the irradiation-induced creep/void swelling has significant mitigation effect on the residual stresses whereas the irradiation hardening/embrittlement has no effect on those.

Parameter calibrations and application of micromechanical fracture models of structural steels

  • Liao, Fangfang;Wang, Wei;Chen, Yiyi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.153-174
    • /
    • 2012
  • Micromechanical facture models can be used to predict ductile fracture in steel structures. In order to calibrate the parameters in the micromechanical models for the largely used Q345 steel in China, uniaxial tensile tests, smooth notched tensile tests, cyclic notched bar tests, scanning electron microscope tests and finite element analyses were conducted in this paper. The test specimens were made from base metal, deposit metal and heat affected zone of Q345 steel to investigate crack initiation in welded steel connections. The calibrated parameters for the three different locations of Q345 steel were compared with that of the other seven varieties of structural steels. It indicates that the toughness index parameters in the stress modified critical strain (SMCS) model and the void growth model (VGM) are connected with ductility of the material but have no correlation with the yield strength, ultimate strength or the ratio of ultimate strength to yield strength. While the damage degraded parameters in the degraded significant plastic strain (DSPS) model and the cyclic void growth model (CVGM) and the characteristic length parameter are irrelevant with any properties of the material. The results of this paper can be applied to predict ductile fracture in welded steel connections.

On the compressibility and elastic shear modulus of clay (점토의 압축성을 고려한 전단탄성계수의 정식화 방법에 대하여)

  • 황성춘;오병현;박성진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.91-97
    • /
    • 2001
  • Case records comprising the results of down-hole seismic surveys collected at nine sites worldwide, together with comparative results of laboratory bender element tests on reconstituted clay samples, were examined in an attempt to quantify the shear modulus of normally consolidated clays at very small strain of the order of 0.001%. The shear modulus G$_{max}$ under the current state of stresses is given in a formula which includes a newly proposed void ratio function. An empirical expression incorporating the new void ratio function is also proposed for practical use in estimating G$_{max}$ profiles with depth in natural soil deposits from routinely available borehole data.ata.

  • PDF

Modeling Heterogeneous Wall Nucleation in Flashing Flow of Initially Subcooled Water

  • Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.241-246
    • /
    • 1996
  • An analytical model to calculate rate of vapor generation due to heterogeneous wall nucleation in flashing flow is developed. In the present model, an important parameter of the vapor generation term, i.e. nucleation site density is calculated by integrating its probability distribution function with respect to active cavity radius. The limits of integration are minimum and maximum active cavity radii, and these are formulated using an active cavity model for nucleate boiling. This formulation, therefore. can statistically account for the effect of surface specific thermo-physical and geometric conditions on the vapor generation rate and flashing inception. For verifying the adequacy of the present model, steady state two-fluid and the bubble transport equations are solved with applicable constitutive equations. The applicable region of the bubble transport equation is also extended to churn-turbulent flow regime to predict interfacial area concentration at high void fraction. Predicted results in terms of axial pressure and void fraction profiles along the channels are compared with experimental data of Super Moby Dick and BNL Reasonable agreements have been achieved and this shows the applicability of the present model to flashing flow analysis.

  • PDF

Lifetime Estimation of Amplifier IC due to Electromigration failure (Electromigration 고장에 의한 Amplifier IC의 수명 예측)

  • Lee, Ho-Young;Chang, Mi-Soon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1265-1270
    • /
    • 2008
  • Electromigration is a one of a critical failure mechanism in microelectronic devices. Minimizing the thin film interconnections in microelectronic devices make high current densities at electrrical line. Under high current densities, an electromigration becomes critical problems in a microelectronic device. This phenomena under DC conditions was investigated with high temperature. The current density of 1.5MA/cm2 was stressed in interconnections under DC condition, and temperature condition $150^{\circ}C,\;175^{\circ}C,\;200^{\circ}C$. By increasing of thin film interconections, microelectronic devices durability is decreased and it gets more restriction by temperature. Electromigration makes electronic open by void induced, and hillock induced makes electronic short state.

  • PDF

The Characteristics of PD Patterns due to the Aging at the Interface between Solid Insulators (고체절연체 계면에서 부분방전 패턴의 열화에 따른 변화특성)

  • Lee, Woo-Young;Sun, Jong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1725-1727
    • /
    • 1998
  • In this paper the patterns of partial discharges(PD) occurred from some defects at the interface of cable joints as the function of the phase of the applied voltage were investigated in order to discern the kind of a defect. The results obtained in this study show that it is possible to distinguish the PD patterns between the void discharges and the treeing or tracking discharges which were occured at the cable joint interface. While the state of defect transfers from a void discharge into a tree or tracking discharge with a aging time, the skewness for both half of the applied voltage cycle is observed to go to the negative value.

  • PDF

EXACT RIEMANN SOLVERS FOR COMPRESSIBLE TWO-PHASE SHOCK TUBE PROBLEMS (압축성 이상(二相) 충격파관 문제에 대한 엄밀 리만해법)

  • Yeom, Geum-Su;Chang, Keun-Shik
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.73-80
    • /
    • 2010
  • In this paper, we present the exact Riemann solver for the compressible liquid-gas two-phase shock tube problems. We hereby consider both isentropic and non-isentropic two-phase flows. The shock tube has a diaphragm in the mid-section which separates the liquid medium on the left and the gas medium on the right. By rupturing the diaphragm, various waves are observed on the phasic field variables such as pressure, density, temperature and void fraction in the form of rarefaction wave, shock wave and material interface (contact discontinuity). Both phases are treated as compressible fluids using the linearized equation of state or the stiffened-gas equation of state. We solve several shock tube problems made of a high/low pressure in the liquid and a low/high pressure in the gas. The wave propagations are well resolved by the exact Riemann solutions.