• Title/Summary/Keyword: Void growth

Search Result 120, Processing Time 0.023 seconds

Mechanical Properties of YBCO Superconductors with Impregnation Materials (보강재를 첨가한 YBCO 초전도체의 기계적강도 변화)

  • Lee, Nam-Il;Jang, Gun-Eik;Lee, Sang-Heon;Kim, Chan-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.247-248
    • /
    • 2006
  • Bulk YBCO 초전도체는 top-seeded melt-growth 방법으로 제조되었다. YBCO bulk는 Epoxy resin과 $AgNO_3$를 보강해 초전도체의 기계적 강도를 향상하고자 하였다. Epoxy resin은 보강 재료인 STYCAST 2850-FT와 경화제인 CATALYST 24LV 를 100:5 비율로 혼합하여 제조한 후 mould에 넣고 $66^{\circ}C$에서 2시간 열처리 하였다 (rotary pump로 진공 분위기 조성). $AgNO_3$$350^{\circ}C$에서 2시간, $450^{\circ}C$에서 1시간 열처리 하여 Ag와 $NO_3$의 분리 후 YBCO bulk에 Ag가 보강되도록 하였다. Epoxy resin 과 분리된 Ag는 YBCO bluk의 crack과 void에 침투되는 것을 SEM과 광학현미경을 통해 관찰할 수 있었다. Three point bending test를 이용하여 보강 전후의 YBCO bulk의 기계적 강도를 측정하였다. 보강 후의 YBCO bluk의 기계적 강도는 보강 전에 비해 향상된 결과를 확인할 수 있었고, Epoxy resin과 $AgNO_3$를 보강한 YBCO는 기계적 강도 향상에 높은 신뢰성을 보이고 있다.

  • PDF

Numerical investigation on the flexural links of eccentrically braced frames with web openings

  • Erfani, S.;Vakili, A.;Akrami, V.
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.171-188
    • /
    • 2021
  • Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software "Abaqus" and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

Numerical investigation on the flexural links of eccentrically braced frames with web openings

  • Erfani, S.;Vakili, A.;Akrami, V.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.183-198
    • /
    • 2022
  • Plastic deformation of link beams in eccentrically braced frames is the primary dissipating source of seismic energy. Despite the excellent compatibility with the architectural designs, previous researches indicate the deficiency of flexural yielding links compared to the shear yielding ones because of their localized plastic deformation. Previous investigations have shown that implementing web openings in beams could be an efficient method to improve the seismic performance of moment-resisting connections. Accordingly, this research investigates the use of flexural links with stiffened and un-stiffened web openings to eliminate localized plasticity at the ends of the link. For this purpose, the numerical models are generated in finite element software "Abaqus" and verified against experimental data gathered from other studies. Models are subjected to cyclic displacement history to evaluate their behavior. Failure of the numerical models under cyclic loading is simulated using a micromechanical based damage model known as Cyclic Void Growth Model (CVGM). The elastic stiffness and the strength-based and CVGM-based inelastic rotation capacity of the links are compared to evaluate the studied models' seismic response. The results of this investigation indicate that some of the flexural links with edge stiffened web openings show increased inelastic rotation capacity compared to an un-perforated link.

The annihilation of the flow pattern defects in CZ-silicon crystal by high temperature heat treatment (고온 열처리에 의한 결정결함의 재용해)

  • 서지욱;김영관
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.3
    • /
    • pp.89-95
    • /
    • 2001
  • The CZ-silicon crystal was annealed at $1350^{\circ}C$ to dissolve the vacancy type grown-in defects. A this temperature, the equilibrium concentration of the oxygen in the silicon crystal is around $1.7{\times}10^{18}$ which induces the oxygen undersaturation in the silicon crystal. This situation results in the faster dissolution of the grown-in defects in the bulk of the silicon wafer than near the surface. This indicates the possibility that the presence of the higher concentration of silicon interstitial hinders the dissolution of the grown-in defects, which were known to compose of the vacancy clusters with surrounding silicon oxide film. This expectation was confirmed by the observation that the slower dissolution of the grown-in defects near the surface of the silicon wafer in the oxygen atmosphere than in the argon atmosphere. This result is quite opposite to the previous argument hat presence of the excess silicon interstitial leads to faster dissolution of the vacancy type defects.

  • PDF

Effects of Leveler on the Trench Filling during Damascene Copper Plating (전해전착시 상감 구리 배선의 충전에 미치는 레벨러의 효과)

  • Lee, Yu-Young;Park, Young-Joon;Lee, Jae-Bong;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.3
    • /
    • pp.153-158
    • /
    • 2002
  • The effects of leveler on the copper trench filling were investigated during damascene plating process. To investigate the trench filling effect with the addition of a leveler, a cross-section images of the electroplated trenches with the width of$0.37{\mu}m,\;and\;0.18{\mu}m$ were observed by field emission scanning electron microscope (FE-SEM). Polyethylene glycol(PEG), 3-mercapto-1-propanesulfonic acid and Janus Green B were used as a carrier, an accelerator and a leveler. $0.37{\mu}m$ trenches were superfilled without voids, but there was voids formation in $0.18{\mu}m$ trenches when the leveler was not added into the electrolyte. On the other hand $0.18{\mu}m$ trenches were superfilled without voids with the addition of the leveler due to the reduction growth rate of copper at protrusions and edges, which yield smooth final deposit surface. The leverer effect becomes more significant as the width of trenches becomes smaller when trenches are filed.

Effects of the V/III ratio on a-plane GaN epitaxial layer on r-plane sapphire grown by HVPE (r-Plane sapphire 위에 HVPE에 의해 성장한 a-plane GaN에피텍셜층의 V/III족 ratio에 따른 특성 변화)

  • Ha, Ju-Hyung;Park, Mi-Seon;Lee, Won-Jae;Choi, Young-Jun;Lee, Hae-Yong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.89-93
    • /
    • 2014
  • In this study, effects of the V/III ratio on a-plane GaN epitaxial on r-plane grown by HVPE have been investigated. According to increasing of V/III ratio, the value of FWHM of a-plane (11-20) GaN and the value of surface roughness (Ra) were decreased. Growth rate of a-plane GaN epitaxial layer were increased until V/III ratio = 7 as the increasing of V/III ratio, but it was reduced at V/III ratio = 10. At V/III ratio = 10, the FWHM of a-plane (11-20) GaN RC and the surface roughness (Ra) were 829 arcsec and 1.58 nm, respectively, as the lowest value in this study. Also for V/III ratio = 10, cracks under surface or voids were observed the lowest values in images of optical microscope. An M-shaped azimuthal dependence over $360^{\circ}$ angle range was observed for all samples. At V/III ratio = 10, the difference of FWHM of a-plane GaN between $0^{\circ}$ and $90^{\circ}$ was 439 arcsec revealed as the lowest value in the 4 samples.

Numerical Simulation of Cavitating Flows on a Foil by Using Bubble Size Distribution Model

  • Ito, Yutaka;Nagasaki, Takao
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.216-227
    • /
    • 2004
  • A new cavitating model by using bubble size distribution based on bubbles-mass has been proposed. Both liquid and vapor phases are treated with Eulerian framework as a mixture containing minute cavitating bubbles. In addition vapor phase consists of various sizes of vapor bubbles, which are distributed to classes based on their mass. The bubble number-density for each class was solved by considering the change of the bubble-mass due to phase change as well as generation of new bubbles due to heterogeneous nucleation. In this method, the bubble-mass is treated as an independent variable, and the other dependent variables are solved in spatial coordinates and bubble-mass coordinate. Firstly, we employed this method to calculate bubble nucleation and growth in stationary super-heated liquid nitrogen, and bubble collapse in stationary sub-cooled one. In the case of bubble growth in super-heated liquid, bubble number-density of the smallest class based on its mass is increased due to the nucleation. These new bubbles grow with time, and the bubbles shift to larger class. Therefore void fraction of each class is increased due to the growth in the whole class. On the other hand, in the case of bubble collapse in sub-cooled liquid, the existing bubbles are contracted, and then they shift to smaller class. It finally becomes extinct at the smallest one. Secondly, the present method is applied to a cavitating flow around NACA00l5 foil. Liquid nitrogen and liquid oxygen are employed as working fluids. Cavitation number, $\sigma$, is fixed at 0.15, inlet velocities are changed at 5, 10, 20 and 50m/s. Inlet temperatures are 90K in case of liquid nitrogen, and 90K and 1l0K in case of liquid oxygen. 110K of oxygen is corresponding to the 90K of nitrogen because of the same relative temperature to the critical one, $T_{r}$=$T/T_c^{+}$. Cavitating flow around the NACA0015 foils was properly analyzed by using bubble size distribution. Finally, the method is applied to a cavitating flow in an inducer of the LE-7A hydrogen turbo-pump. This inducer has 3 spiral foils. However, for simplicity, 2D calculation was carried out in an unrolled channel at 0.9R cross-section. The channel moves against the fluid at a peripheral velocity corresponding to the inducer revolutions. Total inlet pressure, $Pt_{in}$, is set at l00KPa, because cavitation is not generated at a design point, $Pt_{in}$=260KPa. The bubbles occur upstream of the foils and collapse between them. Cavitating flow in the inducer was successfully predicted by using the bubble size distribution.

  • PDF

Geotechnical properties of gas hydrate bearing sediments (가스 하이드레이트 부존 퇴적토의 지반공학적 물성)

  • Kim, Hak-Sung;Cho, Gye-Chun;Lee, Joo-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.151-151
    • /
    • 2011
  • Large amounts of natural gas, mainly methane, in the form of hydrates are stored on continental margins. When gas hydrates are dissociated by any environmental trigger, generation of excess pore pressure due to released free gas may cause sediment deformation and weakening. Hence, damage on offshore structures or submarine landslide can occur by gas hydrate dissociation. Therefore, geotechnical stability of gas hydrate bearing sediments is in need to be securely assessed. However, geotechnical characteristics of gas hydrates bearing sediments including small-strain elastic moduli have been poorly identified. Synthesizing gas hydrate in natural seabed sediment specimen, which is mainly composed of silty-to-clayey soils, has been hardly attempted due to their low permeability. Moreover, it has been known that hydrate loci in pore spaces and heterogeneity of hydrate growth in specimen scale play a critical role in determining physical properties of hydrate bearing sediments. In the presented study, we synthesized gas hydrate containing sediments in an instrumented oedometric cell. Geotechnical and geophysical properties of gas hydrate bearing sediments including compressibility, small-strain elastic moduli, elastic wave, and electrical resistivity are determined by wave-based techniques during loading and unloading processes. Significant changes in volume change, elastic wave, and electrical resistivity have been observed during formation and dissociation of gas hydrate. Experimental results and analyses reveal that geotechnical properties of gas hydrates bearing sediments are highly governed by hydrate saturation, effective stress, void ratio, and soil types as well as morphological feature of hydrate formation in sediments.

  • PDF

Microstructures and Mechanical Properties of AISI 9260 Steel by Spheroidizing Heat Treatment (AISI 9260 강의 구상화 열처리에 따른 미세 조직 및 기계적 성질)

  • Joung, Rae-Un;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.4
    • /
    • pp.302-317
    • /
    • 1995
  • After initial structure of AISI 9260 steel is changed into pearlite and martensite, one is isothermally annealed at $700^{\circ}C$ below of $A_1$ transformation point and the other is isothermally annealed at the same condition after 3 cycles of heating and cooling between $680^{\circ}C$ and $780^{\circ}C$ of $A_1$ transformation point. Analyzing the changes of microstructure, mechanical properties and fractography of tension test, we obtained result as follows. The fastest spheroidization rate by changes of initial structure and heat treatment cycles is appeared at the heat treatment cycle which is isothermally annealed after 3 cycles of heating and cooling at below and above $A_1$ transformation point for martensite. At the above condition, the perfect spheroidization structure is appeared after 60hrs and after then, globular carbide is being coarsened. The mean diameter of globular carbide is $2.4{\times}10^{-3}mm$ after 90hrs. The changes of tension strength during spheroidization heat treatment follows Orwan function, ${\sigma}_o={\sigma}_i+Gb/l$, where l is interspacing of carbide particles and at the above condition, ${\sigma}_o=70.48+2.5{\times}10^{-3}/l(kg/mm^2)$. Fractography of fracture of spheroidization structure in tension test is appeared as dimple which is ductile rupture type by nucleation and growth of void, size of dimple is larger and deeper with increasing of heat treatment time.

  • PDF

Growth Properties of Sputtered ZnO Thin Films Affected by Oxygen Partial Pressure Ratio (산소분압비에 따른 ZnO 박막의 성장특성)

  • Kang, Man-Il;Kim, Moon-Won;Kim, Yong-Gi;Ryu, Ji-Wook;Jang, Han-O
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.3
    • /
    • pp.204-210
    • /
    • 2008
  • ZnO thin films were grown on a glass by RF sputtering system with RF power 100W and oxygen partial pressure of $0%{/sim}30%$. Elliptic constants were measured by using a phase modulated spectroscopic ellipsometer and analyzed with the Tauc-Lorentz dispersion formula and best fit method in the range of 1.5 to 3.8eV. Also, scanning electron microscope(SEM) was used for the analysis of surface crystallization condition. From elliptic constants spectra, optical constants, thickness and roughness of ZnO films were evaluated. Total thickness of ZnO films obtained by ellipsometry showed good agreement with SEM data. It was found that the grain size of the films were getting smaller with increasing oxygen partial pressure. Band-gap of ZnO films increase with the oxygen partial pressure. These findings clearly indicate that optical properties of ZnO films are strongly dependent on the oxygen partial pressure. It could be explained that increasing the oxygen partial pressure induced high crystalline imperfection in the ZnO films.