• Title/Summary/Keyword: Void

Search Result 2,130, Processing Time 0.036 seconds

Void Reactivity of DUPIC Fuel Bundle

  • Hari P. Gupta;Park, Hangbok;Bo W. Rhee;Park, Hyungsoo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.52-57
    • /
    • 1996
  • The coolant void reactivity is positive for CANDU reactor loaded with DUPIC fuel which has more fissile content compared to natural uranium. A parametric study was done to reduce the void reactivity of the fuel bundle and loss in discharge burnup was estimated. It is observed that the burnable absorbers like gadolinium, boron, europium are not able to keep the reduction in void reactivity uniform throughout fuel burnup. Dysprosium and erbium can keep the void reactivity reduction uniform throughout. fuel burnup but toss in discharge burnup for erbium case is more compared to that of dysprosium case.

  • PDF

Effects of Annular Gap Size on the Flow Pattern and Void Distribution in a Vertical Upward Two-Phase Flow (수직상향 이상류에서 동심원관 간극이 유동양식과 보이드분포에 미치는 영향)

  • Son B. J.;Kim I. S.;Kim M. C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.4
    • /
    • pp.383-391
    • /
    • 1987
  • An experimental investigation has been conducted to determine the flow pattern for two-component , two-phase mixtures which flow vertically upwards in concentric annuli based on the measurement for the local void fraction and the distribution of the local void fraction in various radial locations in the annular gap. The annular test section consists of a lucite outer tube whose inside diameter is 38mm and a stainless steel rod, The rod diameter is either :2mm,16mm or 20mm. It is demonstrated that the probability density function of the fluctuations in void fraction may be used as an flow pattern indicator and the local void fraction distribution depends on the flow pattern and radial location in the annular passage.

  • PDF

Effects of Turbulent Mixing and Void Drift Models on the Predictions of COBRA-IV-I

  • Yoo, Yeon-Jong;Hwang, Dae-Hyun;Nahm, Kee-Yil;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.284-289
    • /
    • 1996
  • The predictions of the COBRA-IV-I code with the modified turbulent mixing and void drift models have been compared with the diabatic two-phase flow data on equilibrium quality. The turbulent mixing model based on an equal mass exchange of the existing COBRA-IV-I code has been modified to that based on an equal volume exchange between adjacent subchannels, and a void drift model has been newly incorporated in the code. To evaluate the performance of the equal volume exchange turbulent mixing model and the effects of the void drift model, the diabatic steam-water two-phase flow data obtained for the 9-rod bundle test under the typical operating conditions of the boiling water reactor(BWR) conducted by the General Electric (GE) were analyzed by the modified COBRA-IV-I code. The analysis indicates that the equal volume exchange turbulent mixing model with void drift predicts the observed two-phase flow data trends better than the equal mass exchange model, and to predict the correct data trends a more physically based void drift model need to be developed.

  • PDF

A Study on the Measurement of Local Void Fraction (수직사각 유로내에서의 국부적 기포계수 측정에 관한 연구)

  • B.J. Yun;Kim, K.H.;Park, G.C.;C.H. Chung
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.168-177
    • /
    • 1992
  • The importance of the study of two phase flow phenomena has increased for both fuel performance and safety analysis of nuclear power plants. In the analysis of two phase flow system, an accurate prediction of local void fractions is very important. In this study, a vertical rectangular subchannel having 4 electrically heated rods is constructed for the measurement of local void fraction under two phase flow. The measurement has been conducted by electrical conductivity probes and signal processing circuit which are known to be adequate to measuring local void fraction. Also experiments are performed with varying the inlet flow rate to search for radial void fraction profile accordingly to the different flow rate even with the same averaged void fraction. From the result of experiments, the validity of electrical conductivity probe and electrical circuit is confirmed.

  • PDF

A Study on the Void Ratio and Permeability Coefficient Properties of fiber Reinforced Porous Concrete (섬유보강 포러스 콘크리트의 공극률과 투수계수 특성에 관한 연구)

  • Kim, Jeong-Hwan;Cho, Gwang-Yoen;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.677-682
    • /
    • 2000
  • Porous concrete is defined as d type of concrete for which the fine aggregate component the matrix is entirely omitted. Although it had been used as a building material in Europe for over 60 years, low strength and high void ratio limited its application in the past. In recent years, however high void ratio of concrete has been recognized again and can be used as an environmental conscious material, for example, parking lots, draining light-traffic-volume pavements and as sea water purifying material. The result of an experiment on the void ratio of fiber reinforced porous concrete and its influence on the compressive strength and permeability relationship of concrete are reported in this paper. One-sized coarse aggregate of 5-10mm, and three absolute content of fiber(steel fiber, polyprophylen fiber) were used. The result of measured void ratio, permeability coefficient and compressive strength show a small variation. Void ratio, permeability coefficient and compressive strength of fiber reinforced porous concrete depend on contents of fiber and absolute volume ratios of paste to aggregate.

  • PDF

An Experimental Study of Permeable Concrete Pavement for Practical Use in the Field

  • Kim, Seong-Soo;Jung, Ho-Seop;Moon, Han-Young
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.17-23
    • /
    • 2007
  • In rainy weather, permeable concrete pavement has advantages such as good drainage, increased skid resistance, reduced splash and spray behind vehicles for improving the safety of driving vehicles as well as reduction of the traffic noise. It also contributes to improvement of traffic environment. In this study, the fundamental properties of permeable concrete in accordance with maximum size of aggregate, sand percentage and unit cement content were investigated for practical use of permeable concrete pavement. Although the permeability standard for typical permeable asphalt-concrete pavement is $1{\times}10^{-2}cm/sec$, the researchers determined that the coefficient of permeability of the permeable concrete should be set higher at $1{\times}10^{-1}cm/sec$. Then, the researchers measured the coefficient of permeability, strength, void ratio, and continuous void ratio of the permeable concrete while varying maximum size of the aggregate, sand percentage, unit cement content for detailed analysis. It was found that the void ratio, continuous void ratio, and flexural strength were about 15%, 12%, and 5.0MPa, respectively, when the permeability of the concrete was set at $1{\times}10^{-1}cm/sec$. Given that the maximum size of aggregate was $10{\sim}13mm$, we reached the conclusion that the best mix design for permeable concrete was $0{\sim}20%$ of sand percentage and $380kg/m^3$ of unit cement content.

Evaluation of Air Void System and Permeability of Latex-Modified Concrete by Image Analysis Method

  • Jeong, Won-Kyong;Yun, Kyong-Ku;Hong, Seung-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.41-48
    • /
    • 2007
  • Addition of latex to concrete is known to increase its durability and permeability. The purpose of this study is to analyze air void systems in latex-modified concretes using a reasonable and objective method of image analysis with such experimental variables as water-cement (w/c) ratios, latex contents (0%, 15%) and cement types (ordinary portland cement (OPC), high-early strength (HES) cement and very-early strength (VES) cement). The results are analyzed by spacing factor, air volume (content) after hardening, air void distribution and structure. Additionally, air void systems and permeability of latex-modified concrete (LMC) are compared by a correlation analysis. The results are as follows. The LMC of the same w/c ratio showed better air entraining (AE) effect than OPC with AE water reducer. The VES-LMC showed that the quantity of entrained air below $100{\mu}m$ increased more than four times. For the case of HES-LMC, microscopic entrained air between the range of 50 to $500{\mu}m$ increased greater than 7 times even in the absence of anti-foamer. Although spacing factor was measured rather low, the permeability of latex-modified concrete was good. It is construed that air void system does not have a considerable effect on the property of latex-modified concrete, but latex film (membrane) has a definite influence on the durability of LMC.

Relationship between void fraction and mixing in bubble column flow (기포탑 유동에서의 기포분율과 혼합정도의 상관관계)

  • Zahidul, Islam MD;Lee, Jubeom;Park, Hyungmin
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • Control of mixing and transport processes are the key areas that can be benefited by understanding the hydrodynamics in gas-liquid two-phase flows. In particular, the enhanced bubble-induced liquid-phase mixing is known to be a function of void fraction distribution, gas phase velocity and so on. To further our insight on the characteristics of the liquid-phase mixing induced by the bubbles, in the present study, we experimentally investigate the mixing performance of a rectangular bubble column while changing the void fraction from 0.006 to 0.075%. A shadowgraphy technique is used to measure the gas-phase properties such as void fraction and size/velocity of bubbles. On the other hand, we use dye visualization with low diffusive buoyant dye to directly measure the level of mixing. Finally, we confirm that the time taken for full mixing scales with the inverse of volume void fraction.

대형단조에서의 미세기공 압착해석을 위한 유한요소법의 Global/Local 기법

  • 박치용;영동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.819-823
    • /
    • 1996
  • In the large steel ingosts, void defects exhibiting microvoid shapes are inevitably formed in the V-segregation zone of the ingots during solidification. In the hot open-die forging process, material properties are improved by eliminating internal porosity. The void size is practically very small as compared with the huge large ingot. Thus, for deformation analysis of a large ingot, a massive number of elements are needed in order to describe a void surface and to uniform mesh sturcture. In the present work the Global/Local scheme has been introduced in order to reduce the computational time and to easily generate the mesh system as a void module of local mesh for obtaining the accurate solution around a void. The procedure of the global- local method consists of two steps. In the first step global analysis is carried out which seeks a reasonably good solution with a cpurse mesh system without describing a void. Then, a local analysis is performed locally with a fine mesh system under the size-criterion of a local region. The computational time has been greatly reduced. Though the work it has been shown that large ingot forging incorporation small voids can be effectively analyzed by using the proposed Global/Local scheme.

  • PDF

Via Filling in Fine Pitched Blind Via Hole of Microelectronic Substrate (마이크로 전자기판의 미세 피치 블라인드 비아홀의 충진 거동)

  • Yi Min-Su;Lee Hyo-S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.43-49
    • /
    • 2006
  • The properties, behavior and reliability of the residual void in blind via hole(BVH) were carried out for the shape of BVH using the void extraction process. The residual void was perfectly removed in the specimens applied by the void extraction process, which was improved by 40% rather than the conventional process. The residual void in BVH was to be eliminated under a condition of 1.5 atm for more 30 sec with regardless of the shape of BVH. It was also observed that the residual void in BVH was not formed after the reliability test with JEDEC standard.

  • PDF