• 제목/요약/키워드: Voice conversion

검색결과 66건 처리시간 0.028초

Zero-shot voice conversion with HuBERT

  • Hyelee Chung;Hosung Nam
    • 말소리와 음성과학
    • /
    • 제15권3호
    • /
    • pp.69-74
    • /
    • 2023
  • This study introduces an innovative model for zero-shot voice conversion that utilizes the capabilities of HuBERT. Zero-shot voice conversion models can transform the speech of one speaker to mimic that of another, even when the model has not been exposed to the target speaker's voice during the training phase. Comprising five main components (HuBERT, feature encoder, flow, speaker encoder, and vocoder), the model offers remarkable performance across a range of scenarios. Notably, it excels in the challenging unseen-to-unseen voice-conversion tasks. The effectiveness of the model was assessed based on the mean opinion scores and similarity scores, reflecting high voice quality and similarity to the target speakers. This model demonstrates considerable promise for a range of real-world applications demanding high-quality voice conversion. This study sets a precedent in the exploration of HuBERT-based models for voice conversion, and presents new directions for future research in this domain. Despite its complexities, the robust performance of this model underscores the viability of HuBERT in advancing voice conversion technology, making it a significant contributor to the field.

Transformer 네트워크를 이용한 음성신호 변환 (Voice-to-voice conversion using transformer network)

  • 김준우;정호영
    • 말소리와 음성과학
    • /
    • 제12권3호
    • /
    • pp.55-63
    • /
    • 2020
  • 음성 변환은 다양한 음성 처리 응용에 적용될 수 있으며, 음성 인식을 위한 학습 데이터 증강에도 중요한 역할을 할 수 있다. 기존의 방법은 음성 합성을 이용하여 음성 변환을 수행하는 구조를 사용하여 멜 필터뱅크가 중요한 파라미터로 활용된다. 멜 필터뱅크는 뉴럴 네트워크 학습의 편리성 및 빠른 연산 속도를 제공하지만, 자연스러운 음성파형을 생성하기 위해서는 보코더를 필요로 한다. 또한, 이 방법은 음성 인식을 위한 다양한 데이터를 얻는데 효과적이지 않다. 이 문제를 해결하기 위해 본 논문은 원형 스펙트럼을 사용하여 음성 신호 자체의 변환을 시도하였고, 어텐션 메커니즘으로 스펙트럼 성분 사이의 관계를 효율적으로 찾아내어 변환을 위한 자질을 학습할 수 있는 transformer 네트워크 기반 딥러닝 구조를 제안하였다. 영어 숫자로 구성된 TIDIGITS 데이터를 사용하여 개별 숫자 변환 모델을 학습하였고, 연속 숫자 음성 변환 디코더를 통한 결과를 평가하였다. 30명의 청취 평가자를 모집하여 변환된 음성의 자연성과 유사성에 대해 평가를 진행하였고, 자연성 3.52±0.22 및 유사성 3.89±0.19 품질의 성능을 얻었다.

포만트 공간에서의 주파수 변환을 이용한 이중 언어 음성 변환 연구 (Bilingual Voice Conversion Using Frequency Warping on Formant Space)

  • 채의근;윤영선;정진만;은성배
    • 말소리와 음성과학
    • /
    • 제6권4호
    • /
    • pp.133-139
    • /
    • 2014
  • This paper describes several approaches to transform a speaker's individuality to another's individuality using frequency warping between bilingual formant frequencies on different language environments. The proposed methods are simple and intuitive voice conversion algorithms that do not use training data between different languages. The approaches find the warping function from source speaker's frequency to target speaker's frequency on formant space. The formant space comprises four representative monophthongs for each language. The warping functions can be represented by piecewise linear equations, inverse matrix. The used features are pure frequency components including magnitudes, phases, and line spectral frequencies (LSF). The experiments show that the LSF-based voice conversion methods give better performance than other methods.

남녀 음성 변환 기술연구 (A Study On Male-To-Female Voice Conversion)

  • 최정규;김재민;한민수
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.115-118
    • /
    • 2000
  • Voice conversion technology is essential for TTS systems because the construction of speech database takes much effort. In this paper. male-to-female voice conversion technology in Korean LPC TTS system has been studied. In general. the parameters for voice color conversion are categorized into acoustic and prosodic parameters. This paper adopts LSF(Line Spectral Frequency) for acoustic parameter, pitch period and duration for prosodic parameters. In this paper. Pitch period is shortened by the half, duration is shortened by $25\%, and LSFs are shifted linearly for the voice conversion. And the synthesized speech is post-filtered by a bandpass filter. The proposed algorithm is simpler than other algorithms. for example, VQ and Neural Net based methods. And we don't even need to estimate formant information. The MOS(Mean Opinion Socre) test for naturalness shows 2.25 and for female closeness, 3.2. In conclusion, by using the proposed algorithm. male-to-female voice conversion system can be simply implemented with relatively successful results.

  • PDF

HMM 기반의 한국어 음성합성에서 음색변환에 관한 연구 (A Study on the Voice Conversion with HMM-based Korean Speech Synthesis)

  • 김일환;배건성
    • 대한음성학회지:말소리
    • /
    • 제68권
    • /
    • pp.65-74
    • /
    • 2008
  • A statistical parametric speech synthesis system based on the hidden Markov models (HMMs) has grown in popularity over the last few years, because it needs less memory and low computation complexity and is suitable for the embedded system in comparison with a corpus-based unit concatenation text-to-speech (TTS) system. It also has the advantage that voice characteristics of the synthetic speech can be modified easily by transforming HMM parameters appropriately. In this paper, we present experimental results of voice characteristics conversion using the HMM-based Korean speech synthesis system. The results have shown that conversion of voice characteristics could be achieved using a few sentences uttered by a target speaker. Synthetic speech generated from adapted models with only ten sentences was very close to that from the speaker dependent models trained using 646 sentences.

  • PDF

포먼트 이동과 스펙트럼 기울기의 변환을 이용한 음색 변환 (Voice Color Conversion Based on the Formants and Spectrum Tilt Modification)

  • 손성용;한민수
    • 대한음성학회지:말소리
    • /
    • 제45호
    • /
    • pp.63-77
    • /
    • 2003
  • The purpose of voice color conversion is to change the speaker identity perceived from the speech signal. In this paper, we propose a new voice color conversion algorithm through the formant shifting and the spectrum-tilt modification in the frequency domain. The basic idea of this technique is to convert the positions of source formants into those of target speaker's formants through interpolation and decimation and to modify the spectrum-tilt by utilizing the information of both speakers' spectrum envelops. The LPC spectrum is adopted to evaluate the position of formant and the information of spectrum-tilt. Our algorithm enables us to convert the speaker identity rather successfully while maintaining good speech quality, since it modifies speech waveforms directly in the frequency domain.

  • PDF

13kbps QCELP에서 8kbps QCELP로의 음성 패킷 변환 기술 (Voice Packet Conversion from 13kbps QCELP to 8kbps QCELP Speech Codecs)

  • 박호종;권상철
    • 한국음향학회지
    • /
    • 제18권6호
    • /
    • pp.71-76
    • /
    • 1999
  • 디지털 이동 통신 시스템에서 서로 다른 음성 압축기를 사용하는 단말기 사이의 통신은 음성 신호를 두 번의 압축/복원 과정을 거쳐 전달하므로 음질 저하, 계산량 증가, 전달 지연 증가 등의 문제를 발생시킨다. 본 논문에서는 이와 같은 단말기 사이의 통신에서의 문제점을 해결하기 위하여 음성 패킷 변환 방법을 제안하고, 13kbps QCELP 패킷을 8kbps QCELP 패킷으로 변환하는 방법을 개발한다. 여러 음성 신호를 이용한 모의 실험 결과, 본 논문에서 개발된 패킷 변환기가 짧은 음성전달 지연과 약 33%의 계산량으로 일반적인 이중 압축 방법과 동등한 음질의 음성 신호를 합성하는 것을 확인하였다.

  • PDF

다수 화자 한국어 음성 변환 실험 (Many-to-many voice conversion experiments using a Korean speech corpus)

  • 육동석;서형진;고봉구;유인철
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.351-358
    • /
    • 2022
  • 심층 생성 모델의 일종인 Generative Adversarial Network(GAN)과 Variational AutoEncoder(VAE)는 비병렬 학습 데이터를 사용한 음성 변환에 새로운 방법론을 제시하고 있다. 특히, Conditional Cycle-Consistent Generative Adversarial Network(CC-GAN)과 Cycle-Consistent Variational AutoEncoder(CycleVAE)는 다수 화자 사이의 음성 변환에 우수한 성능을 보이고 있다. 그러나, CC-GAN과 CycleVAE는 비교적 적은 수의 화자를 대상으로 연구가 진행되어왔다. 본 논문에서는 100 명의 한국어 화자 데이터를 사용하여 CC-GAN과 CycleVAE의 음성 변환 성능과 확장 가능성을 실험적으로 분석하였다. 실험 결과 소규모 화자의 경우 CC-GAN이 Mel-Cepstral Distortion(MCD) 기준으로 4.5 % 우수한 성능을 보이지만 대규모 화자의 경우 CycleVAE가 제한된 학습 시간 안에 12.7 % 우수한 성능을 보였다.

Phonetic Posterior Grams에 의해 조건화된 적대적 생성 신경망을 사용한 음성 변환 시스템 (Voice Conversion using Generative Adversarial Nets conditioned by Phonetic Posterior Grams)

  • 임진수;강천성;김동하;김경섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.369-372
    • /
    • 2018
  • 본 논문은 매핑 되지 않은 입력 음성과 목표음성 사이에 음성 변환하는 비 병렬 음성 변환 네트워크를 제안한다. 기존 음성 변환 연구에서는 변환 전후 스펙트로그램의 거리 오차를 최소화하는 방법을 주로 학습 한다. 이러한 방법은 MSE의 이미지를 평균 내는 특징으로 인하여 생성된 스펙트로그램의 해상도가 저하되는 문제점이 있었다. 또한, 병렬 데이터를 사용해 연구를 진행했기 때문에 데이터를 수집하는 것에도 어려움이 많았다. 본 논문에서는 입력 음성의 발음 PPGs를 사용하여 비 병렬 데이터 간 학습을 진행 하며, GAN 학습을 통해 더욱 선명한 음성을 생성하는 방법을 사용하였다. 제안한 방법의 유효성을 검증하기 위해서 기존 음성 변환 시스템에서 많이 사용하는 GMM 기반 모델과 MOS 테스트를 진행하였으며 기존 모델에 비하여 성능이 향상되는 결과를 얻었다.

  • PDF

Voice Frequency Synthesis using VAW-GAN based Amplitude Scaling for Emotion Transformation

  • Kwon, Hye-Jeong;Kim, Min-Jeong;Baek, Ji-Won;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권2호
    • /
    • pp.713-725
    • /
    • 2022
  • Mostly, artificial intelligence does not show any definite change in emotions. For this reason, it is hard to demonstrate empathy in communication with humans. If frequency modification is applied to neutral emotions, or if a different emotional frequency is added to them, it is possible to develop artificial intelligence with emotions. This study proposes the emotion conversion using the Generative Adversarial Network (GAN) based voice frequency synthesis. The proposed method extracts a frequency from speech data of twenty-four actors and actresses. In other words, it extracts voice features of their different emotions, preserves linguistic features, and converts emotions only. After that, it generates a frequency in variational auto-encoding Wasserstein generative adversarial network (VAW-GAN) in order to make prosody and preserve linguistic information. That makes it possible to learn speech features in parallel. Finally, it corrects a frequency by employing Amplitude Scaling. With the use of the spectral conversion of logarithmic scale, it is converted into a frequency in consideration of human hearing features. Accordingly, the proposed technique provides the emotion conversion of speeches in order to express emotions in line with artificially generated voices or speeches.