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1. Introduction

Voice conversion technology, which alters the speech sound of 
one speaker to mimic another while maintaining the integrity of the 
original content, has broad implications across sectors like entertainment 
and dubbing. The challenge with successful voice conversion lies in 
separating the content and speaker information from the speech 
signal. It often results in an unintentional alteration of content when 
trying to modify the speaker's information or an insufficient change of 
timbre in the output (Sisman et al., 2021). Despite this challenge, deep 
learning advancements have brought about significant improvements 
in the field of voice conversion.

AUTOVC is a prominent exemplar of neural voice conversion, 

utilizing an autoencoder approach to diminish and subsequently 
restore the dimensionality of the input (Qian et al., 2019). This 
model uses the source speech as the input and the target speech as 
the condition, which is the most typical form of neural voice 
conversion. One distinct advantage of this method is its applicability 
to non-parallel data, which was a limitation with previous voice 
conversion models that required multiple speakers to read identical 
sentences (Sisman et al., 2021). The autoencoder approach enables 
the use of data from multiple speakers reading different sentences, 
thus allowing for a more extensive data collection.

AUTOVC stands as a pioneering work in the field of neural voice 
conversion, having established a foundational framework upon 
which subsequent research has built. However, it is important to 
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Abstract 

This study introduces an innovative model for zero-shot voice conversion that utilizes the capabilities of HuBERT. 
Zero-shot voice conversion models can transform the speech of one speaker to mimic that of another, even when the model 
has not been exposed to the target speaker's voice during the training phase. Comprising five main components (HuBERT, 
feature encoder, flow, speaker encoder, and vocoder), the model offers remarkable performance across a range of scenarios. 
Notably, it excels in the challenging unseen-to-unseen voice-conversion tasks. The effectiveness of the model was assessed 
based on the mean opinion scores and similarity scores, reflecting high voice quality and similarity to the target speakers. 
This model demonstrates considerable promise for a range of real-world applications demanding high-quality voice 
conversion. This study sets a precedent in the exploration of HuBERT-based models for voice conversion, and presents new 
directions for future research in this domain. Despite its complexities, the robust performance of this model underscores the 
viability of HuBERT in advancing voice conversion technology, making it a significant contributor to the field.
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note that its performance with respect to zero-shot voice conversion 
leaves room for substantial improvement.

Indeed, the overarching objective in the realm of voice conversion, 
and more broadly in machine learning, is to achieve what is known 
as zero-shot learning. In simple terms, zero-shot learning can be 
likened to a person's ability to correctly answer a question on a topic 
that they have never studied, purely based on their broader 
knowledge and understanding of related subjects.

For a machine learning model, zero-shot learning translates into 
the model's capacity to perform tasks for which it was not explicitly 
trained (Palatucci et al., 2009). For example, in the case of voice 
conversion, a zero-shot learning model can transform the speech of 
one speaker to mimic that of another, even if the model has never 
encountered the target speaker's voice during its training. This is a 
complex and challenging goal, as the model must infer the acoustic 
traits of the target speaker without any direct exposure.

On the other hand, the few-shot learning is akin to someone 
learning a new concept or skill with only a few examples or a 
minimal amount of instruction. In machine learning, this implies 
training a model on a small amount of data related to the task it will 
be asked to perform (Logan et al., 2021). In the voice conversion 
example, few-shot learning would involve training the model on a 
limited number of voice samples from the target speaker, just 
enough for it to understand the speaker's essential voice traits.

Zero-shot learning presents a significant challenge in the realm of 
voice conversion, requiring sophisticated techniques for unsupervised 

learning and inference. Furthermore, it must contend with the 
inherent variability in human speech, affected by factors ranging 
from the speaker's emotional state to their physical environment.

However, recent advancements in machine learning and artificial 
intelligence have opened new possibilities in this field. Powerful 
deep learning architectures and novel learning strategies have 
brought us closer than ever to achieving reliable zero-shot voice 
conversion.

Moreover, recent research trends include the exploration of 
multi-speaker text-to-speech (TTS) systems alongside voice conversion. 
Zero-shot multi-speaker TTS and voice conversion share 
similarities, though they differ primarily in their inputs: text for the 
former and speech for the latter. Models like VITS have leveraged 
normalizing flows (Rezende & Mohamed, 2015) in their architecture, 
conditioning the flow on speaker information and implementing it 
within their duration predictors (Kim et al., 2021). Furthermore, 
NaturalSpeech 2 from Microsoft Inc., which incorporates a diffusion 
model, is regarded as one of the top-performing zero-shot speech 
synthesizers, particularly for its ability to produce high-quality speech 
(Shen et al., 2023; Sohl-Dickstein et al., 2015).

The field of voice conversion has recently seen an emerging 
interest in the utilization of HuBERT (Hsu et al., 2021), as 
large-scale acoustic model. A pivotal study by van Niekerk et al. 
(2022) demonstrated that the employment of HuBERT as a content 
encoder in voice conversion outperforms models based on traditional 
acoustic features such as Mel-frequency cepstral coefficient (MFCC). 

Figure 1. Proposed model
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While open-source voice conversion projects such as so-vits-svc and 
RVC are incorporating HuBERT into their systems (RVC-Project, 
2023; svc-develop-team, 2023), the application of HuBERT in voice 
conversion remains largely unexplored. Therefore, this paper introduces 
a model for zero-shot voice conversion using HuBERT, discussing 
its performance and viability.

2. Model

The structure of the model proposed in this paper is shown in 
Figure 1. The model consists of five main modules: HuBERT, 
Feature Encoder, Flow, Speaker Encoder, and Vocoder.

2.1. HuBERT

2.1.1. Transformer
Transformer is a model architecture which employs a unique 

self-attention mechanism that allows it to capture long-range 
dependencies and effectively model sequential data (Vaswani et al., 
2017). The transformer architecture consists of an encoder and a 
decoder, both consisting of multiple identical layers. Each layer 
incorporates self-attention and feed-forward neural networks to 
capture dependencies and generate higher-level representations. 
Residual connections and layer normalization are used to retain 
important information and stabilize training. The encoder processes 
the input sequence, while the decoder generates the output sequence, 
attending to relevant parts of the input.

2.1.2. BERT
BERT consists of a stack of transformer encoders that capture 

complex representations of input sequences (Devlin et al., 2018). 
Each transformer encoder layer incorporates self-attention and 
feed-forward neural network sub-layers to model dependencies between 
words and generate higher-level contextualized representations. BERT 
follows a two-step process, starting with pre-training on unlabeled 
text data using masked language modeling and next sentence 
prediction tasks (Devlin et al., 2018). This pre-training enables 
BERT to learn contextual word representations. In the fine-tuning 
phase, BERT is trained on specific labeled datasets for downstream 
tasks.

2.1.3. HuBERT
HuBERT, a speech embedding model, employs the Transformer's 

encoder to extract hidden units from speech data (Hsu et al., 2021). 
Its self-supervised learning methodology allows it to learn effectively 
from unlabeled data. The architectural design of HuBERT closely 
mirrors that of the wav2vec 2.0, comprising several primary 
components, but they differ in training processes (Baevski et al., 
2020; Schneider et al., 2019).

The initial step of the training process involves generating hidden 
units. This begins by extracting MFCC from the waveform, which 
serve as fundamental acoustic features for speech representation. 
Each audio segment is subsequently subjected to the K-means 
clustering algorithm and allotted to one of the K clusters. Each 
audio frame is labeled according to its respective cluster. Following 
this, these hidden units are transformed into embedding vectors for 
usage in the subsequent training phase.

The second phase aligns closely with the training process of 

BERT, employing masked language modeling (Devlin et al., 2018). 
In this phase, the Convolutional Neural Network is tasked with 
generating features from the raw audio. These features are randomly 
masked and introduced into the Transformer encoder. The encoder 
then produces a feature sequence, filling in the gaps left by the 
masked tokens. The resulting output undergoes a projection into a 
lower dimension to align with the labels. Finally, the cosine 
similarity between the output and hidden unit embedding created 
during the first phase is computed.

With fine-tuning through supervised learning, HuBERT can be 
employed for tasks such as speech recognition and synthesis. Meta 
AI has released pre-trained HuBERT models that were trained using 
Librispeech data or Libri-Light data. For the purpose of this study, 
the HuBERT base model was used, which boasts of 95 million 
parameters.

2.2. Feature Encoder
The Feature Encoder is a novel module designed to encode target 

speaker features, source speaker features, as well as auxiliary 
acoustic features. Comprised of several convolutional blocks, each 
block is built upon a CNN layer, followed by batch normalization, 
an activation function, and dropout. This configuration of the 
convolutional blocks demonstrates that the activation function 
should be fed with a well-calibrated distribution, as proposed by 
Ioffe & Szegedy (2015).

The encoder ingests both the target speaker's voice and the source 
voice, which have been processed through HuBERT. Features of the 
source speaker and the target speaker are amalgamated and go 
through multiple convolutional blocks. The output from the feature 
encoder is 'z', which is subsequently used as the input to the inverse 
flow.

Supplementary acoustic features, such as pitch, energy, and 
voicing, can also be incorporated at this stage. They were obtained 
using a signal processing package Librosa (McFee et al., 2015). The 
modulation of pitch information based on the gender difference 
between the target and source speaker has proven beneficial during 
inference. For instance, when the target speaker is male and the 
source speaker is female, the pitch derived from the source speaker 
is reduced approximately by an octave. This adjusted pitch is then 
supplied to the Feature Encoder.

2.3. Flow
Normalizing flow is a type of generative model adept at learning 

a probability distribution from given data (Rezende & Mohamed, 
2015). This model works by transforming a straightforward, easily 
sampled distribution into a more intricate distribution that mirrors 
the data. 

The primary concept behind normalizing flows involves the use 
of a series of invertible transformations, which map a simple 
distribution to a more complicated one. These transformations are 
typically executed as neural networks, with the parameters of these 
networks being learned from data. 
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TTS, text-to-speech.

Figure 2. Spectrogram decoder in Glow-TTS.

The flow component for the proposed model is inspired by the 
spectrogram decoder of Glow-TTS (Kim et al., 2020). Each flow 
block is composed of an activation normalization layer, an affine 
coupling layer, and an invertible convolution layer (Kingma & 
Dhariwal, 2018). During the training phase, the system learns to 
convert the mel-scale spectrogram into a latent representation 'z', 
which follows a Gaussian distribution. Conversely, during the 
inference phase, 'z' is transformed back into the mel-scale spectrogram. 
This reciprocal process is feasible due to the invertible nature of all 
operations in the flow block.

The output derived from the Speaker Encoder, details of which 
will be elaborated subsequently, is utilized as a condition in the 
Affine Coupling Layer. Rather than being incorporated as a 
complex expression, the condition is imply added to the input. This 
straightforward integration facilitates its usage both during the 
training phase and the inference phase.

2.4. Speaker Encoder
The Speaker Encoder, a key component of the voice conversion 

model, is designed to accept the mel-scale spectrogram of the target 
speaker as its input. This module is elegantly simple, composed of a 
bidirectional LSTM layer and a linear layer.

An LSTM layer is known for its ability to capture long-term 
dependencies (Hochreiter & Schmidhuber, 1997). A bidirectional 
LSTM layer is a modified version of a traditional LSTM Layer. It 
processes the input data in both forward and backward directions, 
allowing it to capture temporal dependencies from both past and 
future contexts (Graves, 2013; Schuster & Paliwal, 1997).

The bidirectional LSTM layer processes the mel-scale spectrogram 
to generate a sequence of hidden states, ensuring a more comprehensive 
understanding of the speaker characteristics. These hidden states, 
carrying intricate temporal information, are then processed by the 
linear layer.

Unlike typical conventional embedding layers that rely on 
speaker IDs to generate speaker vector, this encoder has the capacity 
to infer characteristics of speakers unseen during the training phase. 
This design of the speaker encoder caters to the challenge of zero-shot 
voice conversion: capturing and emulating speaker characteristics 

without having prior exposure to the target speaker during training.

2.5. Vocoder
HiFi-GAN is employed as the vocoder for this study. HiFi-GAN 

is a model that processes a mel-scale spectrogram as input to 
produce an audio signal as output. Its generator utilizes a transposed 
convolution to upscale the mel-scale spectrogram, which is then 
synthesized into a waveform via multi-receptive field fusion. HiFi- 
GAN employs two discriminators to ensure balance between the 
intensive work of the generator and the relatively simpler tasks of the 
discriminators. These two discriminators, namely the multi-period 
discriminator (MPD) and the multi-scale discriminator (MSD), 
scrutinize the input and discern its authenticity (Kong et al., 2020).

While traditional applications of HiFi-GAN focus on single 
speaker usage, it can be adeptly reconfigured for multi-speaker 
functionality by training it on data from diverse speakers. There are 
two prominent approaches: one entails providing distinct speaker 
information to the vocoder, and the other involves generating audio 
from spectrograms devoid of speaker information. Given the robust 
and stable nature of HiFi-GAN, we opted for feeding it with 
multi-speaker data without separate speaker information.

3. Training

The training data utilized was the VCTK dataset, comprised of 44 
hours of English speech recorded by 109 distinct speakers 
(Yamagishi et al., 2019). This dataset provides a well-rounded and 
comprehensive learning environments for the model to understand 
and mimic various voice characteristics.

During the training process, the model was fed with same 
speakers as the source and the target. To ascertain that the speaker 
vector, generated by the speaker encoder, adequately extracts 
speaker information, a layer was incorporated that undertakes the 
speaker classification task. The classification layer was trained 
together with the voice conversion model and was subsequently 
discarded after the training process.

For the optimization strategy, the Adam optimizer was utilized. 
Adam, an acronym for Adaptive Moment Estimation, is a widely 
used optimization algorithm for training deep learning models, 
acting as an extension of the Momentum method and the RMSProp 
optimizer (Buduma et al., 2022; Kingma & Ba, 2014). Known for its 
efficiency, it swiftly trains deep learning models across diverse tasks 
by using first- and second-order moment estimates to update 
parameters. Despite being sensitive to hyperparameters, it stands as 
a potent and versatile optimization algorithm.

Hyperparameters were carefully tuned to optimize the model's 
performance. The learning rate was initially set as 0.0001, with a 
decay rate implemented after every ten epochs to ensure the model 
could converge smoothly. The model was trained over a total of 
1,000 epochs, providing a balance between achieving satisfactory 
performance and preventing overfitting. Batch size was set at 32, 
given the trade-off between computational efficiency and the 
stability of the model's learning process (Keskar et al., 2016).

The model was trained on an NVIDIA Tesla V100 GPU, due to 
its high computational power and its large memory capacity, which 
is beneficial for handling complex models. The capability to process 
large blocks of data in parallel makes it an ideal choice for deep 
learning tasks.
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4. Evaluation

The models deployed in this study were assessed using both the 
mean opinion score (MOS) and a similarity test. The MOS is 
determined by averaging the scores given by multiple evaluators on 
a scale ranging from 1 to 5, where 1 corresponds to 'Bad' and 5 
denotes 'Excellent'.

Mirroring the structure of the MOS, the similarity test is also 
scored on a 1 to 5 scale. However, as suggested by Wester, in the 
context of the similarity test, a score of 5 denotes that the evaluator 
is highly confident that the two voices belong to the same speaker 
(Wester et al., 2016). Conversely, a score of 1 suggests the evaluator 
is less confident that the two voices represent different speakers. 

A total of 20 participants, ten males and ten females, were engaged 
to evaluate the voice conversion outcomes. The voices were stratified 
into four distinct settings: seen-to-seen, seen-to-unseen, unseen-to- 
seen, and unseen-to-unseen, contingent on whether the source and 
target speakers were included in the training dataset.

The seen speakers comprise a randomized selection of 10 
individuals from the training dataset, VCTK. The unseen speakers 
are drawn from the Hifi Multi-Speaker English TTS Dataset, which 
is a curated collection of voice samples from 10 distinct speakers 
sourced from LibriVox (Bakhturina et al., 2021). Ten output audios 
were synthesized for each setting and subsequently assessed by 
human evaluators.

Setting MOS
Seen to seen 4.02±0.08

Sseen to unseen 3.96±0.12
Unseen to seen 4.01±0.07

Unseen to unseen 3.85±0.10
MOS, mean opinion score.

Table 1. The MOS with 95% confidence interval

Setting Similarity score
Seen to seen 4.21±0.10

Seen to unseen 3.98±0.09
Unseen to seen 4.10±0.06

Unseen to unseen 3.92±0.05

Table 2. The similarity scores with 95% confidence interval

Upon analysis of the results, it was observed that the MOS 
uniformly hovered around 4 across all settings. Additionally, the 
similarity scores, which reflect the resemblance of the converted 
voices to the target voices, demonstrated noteworthy performance, 
with a particularly impressive similarity score of 3.92 being 
achieved in the unseen-to-unseen setting. These findings corroborate 
that the model proposed in this paper exhibits efficacy, even in the 
challenging context of zero-shot voice conversion.

5. Conclusion

This study introduces an advanced model for zero-shot voice 
conversion, employing the potent capabilities of HuBERT. The 
proposed system is an integration of five crucial components—
HuBERT, Feature Encoder, Flow, Speaker Encoder, and Vocoder. 
Together, they culminate in a model that delivers superior performance, 
outshining expectations even under challenging conditions such as 

unseen-to-unseen scenarios.
The strength of this model is particularly evident in its remarkable 

voice quality and speaker similarity metrics. It consistently generates 
high-quality output that maintains a high degree of similarity to the 
target speaker's voice, attesting to its precision and reliability. Even 
when faced with unfamiliar speakers, the model exhibits a robust 
capacity for voice conversion, showcasing its adaptability and 
resilience.

Given its robust performance, the model presents wide-ranging 
applications in real-world settings where high-quality voice 
conversion is demanded. Its potential impact extends across sectors 
from telecommunication and entertainment to accessibility services, 
setting new benchmarks in the field of voice conversion. The 
success of this research further underscores the relevance and 
promise of deploying advanced technologies like HuBERT in the 
ongoing evolution of voice conversion systems.

However, despite the significant strides made in performance and 
quality, one of the current limitations of the model is its substantial 
computational weight, largely attributed to the inclusion of the 
HuBERT module. While this aspect contributes significantly to the 
model's performance, it also necessitates extensive computational 
resources, thereby limiting its immediate deployment on devices 
with modest computational capabilities.

Future work will focus on refining and optimizing the model, 
particularly the HuBERT component, to reduce its computational 
demands without compromising the quality and effectiveness of 
voice conversion. In this regard, attention mechanisms could be 
explored within HuBERT for qualitative changes in the outcome. 
Introducing residual forward paths may potentially enhance the 
numeric flow of the model. Further, for model optimization, especially 
concerning weight adjustments and calculation speed, the convolution 
mechanics could be modified to utilize separable, depth-wise 
convolution. Continued efforts in this vein would lead to a more 
accessible and widely deployable voice conversion model, bringing 
the benefits of advanced voice conversion technology to a larger 
audience.
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