• 제목/요약/키워드: Vocabulary Independence

검색결과 9건 처리시간 0.024초

개선된 Levenshtein Distance 알고리즘을 사용한 어휘 탐색 시스템 (Vocabulary Retrieve System using Improve Levenshtein Distance algorithm)

  • 이종섭;오상엽
    • 디지털융복합연구
    • /
    • 제11권11호
    • /
    • pp.367-372
    • /
    • 2013
  • 기존의 Levenshtein distance 알고리즘은 어휘들 간의 순서가 정해져 있지 않은 경우에 사용되므로 어휘 탐색 작업의 중요도를 구분할 수 없는 단점을 가진다. 본 연구에서 제안하는 개선된 Levenshtein 방법에서는 효율적으로 사용빈도에 따라 어휘들을 탐색하고, 어휘들 간의 순서를 가지는 가중치를 부여한다. 따라서 어휘의 수가 증가하는 경우에도 효율적으로 사용빈도에 따라 어휘를 탐색하여 인식율이 저하되는 단점을 해결하고, 인식 시간을 향상 및 탐색 공간의 효율적으로 관리할 수 있는 장점을 가진다. 제안한 시스템을 분석한 결과 실내 환경에서 어휘 종속 인식률은 97.81%, 어휘 독립 인식률은 96.91%의 인식률을 나타났다. 또한, 실외 환경에서 어휘 종속 인식률은 91.11%, 어휘 독립 인식률은 90.01%의 인식률을 나타났다.

VCOR를 이용한 효율적인 어휘 최적화 관리 (Efficient Vocabulary Optimization Management using VCOR)

  • 오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권10호
    • /
    • pp.1436-1443
    • /
    • 2010
  • 어휘 인식 시스템에서는 처리되는 어휘가 나타나지 않는 미 출현 트라이 폰이 존재하는 단점이 있으며 이에 따른 신뢰도의 분포를 가지고 있지 않기 때문에 정규화를 수행할 수 없다. 따라서 이를 개선하기 위하여 미등록어 거절 알고리즘에서 사용되는 어휘 관리를 최적화하고 음소 단위로 데이터 탐색을 지원하는 VCOR 시스템을 제안한다. 또한 VCOR에서는 어휘 정보를 효율적으로 제공하기 위해 확장 facet 분류를 이용하여 사용자에게 어휘 단위의 정보를 제공하고, 어휘에 대한 향상된 추적 관리 가능을 제공하여 어휘에 대한 인식의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 97.56%, 어휘 독립 인식률은 96.23%의 인식률을 나타내었다.

상태 공유와 결정트리 방법을 이용한 효율적인 문맥 종속 프로세스 모델링 (Efficient context dependent process modeling using state tying and decision tree-based method)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.369-377
    • /
    • 2010
  • HMM(Hidden Markov Model)을 사용하는 어휘 인식 시스템에서 인식 시 훈련 중에 나타나지 않는 모델들로 인해 인식률의 저하를 가져오며 인식 대상 어휘가 변경되거나 추가되면 데이터베이스의 수집과 훈련 과정을 수행하여 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 방법과 모델 공유 방법을 사용하여 효율적인 문맥 종속 프로세스 모델링 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 모델 공유 방법을 이용하여 모델의 재생성 과정을 줄이고 강인하고 정확한 문맥 종속 음향 모델링을 제공한다. 또한, 모델의 수를 줄이고 훈련 중에 나타나지 않는 모델들에 대해 문맥 종속 유사 음소 모델을 제공하여 훈련 중에 나타나지 않는 모델의 문제점을 해결하고 훈련성을 확보하였다. 제안된 방법으로 6종류의 음성 데이터베이스를 이용하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 어휘 종속 인식 실험에서는 98.01%의 성능을 보였고, 어휘 독립 인식 실험에서 97.38%의 성능을 보였다.

MLHF 모델을 적용한 어휘 인식 탐색 최적화 시스템 (Vocabulary Recognition Retrieval Optimized System using MLHF Model)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권10호
    • /
    • pp.217-223
    • /
    • 2009
  • 모바일 단말기의 어휘 인식 시스템에서는 통계적 방법에 의한 어휘인식을 수행하고 N-gram을 이용한 통계적 문법 인식 시스템을 사용한다. 인식 대상이 되는 어휘의 수가 증가하면 어휘 인식 알고리즘이 복잡해지고 대규모의 탐색공간을 필요로 하게 되며 처리시간이 길어지므로 제한된 연산처리 능력과 메모리로는 처리하기가 불가능하다. 따라서 본 논문에서는 이러한 단점을 개선하고 어휘 인식을 최적화하기 위하여 MLHF 시스템을 제안한다. MLHF는 FLaVoR의 구조를 이용하여 음향학적 탐색과 언어적 탐색을 분리하여 음향학적 탐색에서는 HMM을 사용하고 언어적 탐색 단계에서는 Levenshtein distance 알고리즘을 사용한다. 시스템 성능 평가 결과 어휘 종속 인식률은 98.63%, 어휘 독립 인식률은 97.91%의 인식률을 나타냈으며 인식속도는 1.61초로 나타내었다.

유사 음소 모델 스키마 지원을 위한 결정 트리 (Decision Tree for Likely phoneme model schema support)

  • 오상엽
    • 디지털융복합연구
    • /
    • 제11권10호
    • /
    • pp.367-372
    • /
    • 2013
  • 어휘 인식 시스템에서는 훈련 중에 적용되지 않는 음소에 대한 문제점으로 인해 시스템에 저장된 모델을 재생성해야 하고 그에 따른 시간과 추가 비용이 초래된다. 본 논문에서는 결정 트리 군집화 방법을 사용하여 유사 음소 모델을 관리하는 방법을 제안하였다. 제안한 방법은 생성된 모델들로부터 결정트리 군집화 방법을 적용하여 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하여 모델의 재생성 과정을 줄이고 강인하고 정확한 음향 모델을 제공한다. 또한, 제안된 시스템의 사용으로 시스템에서 기존에 생성되어진 음향 모델에 추가적으로 유사 음소 모델을 생성하여 제공하므로 음성 인식에 강인한 음향 모델을 구성한다. 본 연구에서 제안된 방법으로 실내 환경에 대하여 어휘 종속 인식과 어휘 독립 인식 실험을 수행한 결과 실내 환경의 어휘 종속 실험에서는 98.3%의 인식 성능을 보였고, 어휘 독립 실험에서 98.4%의 인식 성능을 보였다.

공유모델 인식 성능 향상을 위한 효율적인 연속 어휘 군집화 모델링 (Efficient Continuous Vocabulary Clustering Modeling for Tying Model Recognition Performance Improvement)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권1호
    • /
    • pp.177-183
    • /
    • 2010
  • 연속 어휘 인식 시스템에서는 통계적 방법에 의한 어휘 인식을 수행하기 위하여 확률분포를 이용하며 이는 음소 단위의클러스터링을사용하여모델링하여샘플들을기반으로 확률 파라미터를 추정한다. 어휘 검색 시 추정된 확률 파라미터로부터 인식 결과를 나타내는데 미리 정의되지 않은 음소와 추가되어진 음소로부터 인식률이 저하되는 문제점이 발생하며, 하나의 클러스터링으로 모델링하므로 가우시안 모델이 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하여 유사도를 기반으로 Euclidean과 Bhattacharyya 거리 측정 방법을 혼합한 군집화 모델을 제안하고, 군집화된 모델에서 음소 단위로 확률 모델을 탐색할 수 있는 시스템을 모델링하였다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.63%, 어휘 독립 인식률은 97.91%의 인식률을 나타내었다.

음향학적 및 언어적 탐색을 이용한 어휘 인식 최적화 (The Vocabulary Recognition Optimize using Acoustic and Lexical Search)

  • 안찬식;오상엽
    • 한국멀티미디어학회논문지
    • /
    • 제13권4호
    • /
    • pp.496-503
    • /
    • 2010
  • 어휘인식 시스템은 스탠드 얼론(Standalone)으로 개발되어 지고 있으며 휴대용 단말기에서 사용하였을 경우 메모리 공간의 제약과 오디오 압축으로 인해 인식률이 낮게 나타난다. 본 연구에서는 휴대용 단말기의 성능과 인식률 향상을 위하여 음향학적 탐색과 언어적 탐색을 분리하여 어휘 인식 속도를 개선한 시스템을 제안하였다. 음향학적 탐색은 휴대용 단말기에서 수행하고 보다 복잡한 언어적 탐색은 서버에서 처리하는 시스템으로 음성신호로부터 특징벡터를 추출하여 GMM을 이용한 음소인식을 수행하고, 인식된 음소 열을 서버로 전송하여 렉시컬 트리 탐색 알고리즘을 사용하여 언어적 탐색 단계에서 어휘 인식을 수행하였다. 시스템 성능 평가 결과 어휘 종속 인식률은 98.01%, 어휘 독립 인식률은 97.71%의 인식률을 나타냈으며 인식속도는 1.58초로 나타내었다.

형상 형성 제어를 이용한 어휘인식 공유 모델의 가우시안 최적화 (Gaussian Optimization of Vocabulary Recognition Clustering Model using Configuration Thread Control)

  • 안찬식;오상엽
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.127-134
    • /
    • 2010
  • 연속 어휘 인식 확률 분포의 공유 방법에서는 사용될 모델 파라미터들의 초기 추정치를 생성하기 위한 각 문맥들에 대한 음소 데이터가 반드시 필요하지만 이들 음소 데이터에 대한 모델을 구성할 수 없는 단점으로 가우시안 모델의 정확성을 확보하지 못한다는 단점이 있다. 이를 개선하기 위하여 확률 분포의 혼합 가우시안 모델을 최적화하고, 음소 단위로 데이터를 탐색을 지원하는 형상 형성 시스템을 제안한다. 본 논문의 형상 형성 시스템은 확장 facet 분류를 이용하여 사용자에게 음소 단위의 형상 형성 정보를 제공하므로 가우시안 모델의 정확성을 제공한다. 본 논문에서 제안한 시스템을 적용한 결과 시스템 성능에서 어휘 종속 인식률은 98.31%, 어휘 독립 인식률은 97.63%의 인식률을 나타내었다.

시소러스 국제표준 기반 기본 범주의 확장에 관한 연구 (A Study on the Expansion of Fundamental Categories Based on Thesaurus International Standards)

  • 장인호
    • 한국도서관정보학회지
    • /
    • 제50권1호
    • /
    • pp.273-291
    • /
    • 2019
  • 본 연구는 시소러스 국제표준(ISO 25964-1) 제11절 "패싯 분석"과 제5절의 "시소러스에 있어서의 개념 및 그들의 범위"를 분석하여, 제11절에 예시된 기본 범주(대상, 물질, 에이전트, 행위, 장소, 시간 등)를 확장하는 데에 목적이 있다. 이를 위해 온톨로지의 최상위 개념(구구리일랑(溝口理一郞)의 상위 온톨로지인 YAMATO)과 기존의 기본 범주들(Ranganathan의 PMEST, FRBR 제3집단, CRG 13 범주 등)을 참조하여, 기본 범주에 정신적 실체를 명시적으로 추가하고, 일부를 조정하여 기본 범주를 확립했다. 또한, 확립된 기본 범주를 Ranganathan의 PMEST의 구체성/추상성과 구구리일랑(溝口理一郞)의 YAMATO의 독립성/종속성을 기반으로 재편성 및 구조화하였다. 최상위 범주를 독립 실체와 종속 실체로 이분하고 하위 구분으로 전자는 28범주, 후자는 2범주를 두었다. 본 연구의 결과는 기본 범주의 활용이 기대되는 분류, 택소노미, 시소러스 등의 제어 어휘 및 정보검색용 온톨로지를 생성할 때 최상위 개념으로서 재활용되고 참조할 수 있을 것으로 기대된다.