• Title/Summary/Keyword: Vital signal

Search Result 153, Processing Time 0.027 seconds

Acyl Homoserine Lactone in Interspecies Bacterial Signaling

  • Kanojiya, Poonam;Banerji, Rajashri;Saroj, Sunil D.
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Bacteria communicate with each other through an intricate communication mechanism known as quorum sensing (QS). QS regulates different behavioral aspects in bacteria, such as biofilm formation, sporulation, virulence gene expression, antibiotic production, and bioluminescence. Several different chemical signals and signal detection systems play vital roles in promoting highly efficient intra- and interspecies communication. Gram-negative bacteria coordinate gene regulation through the production of acyl homoserine lactones (AHLs). Gram-positive bacteria do not code for AHL production, while some gram-negative bacteria have an incomplete AHL-QS system. Despite this fact, these microbes can detect AHLs owing to the presence of LuxR solo receptors. Various studies have reported the role of AHLs in interspecies signaling. Moreover, as bacteria live in a polymicrobial community, the production of extracellular compounds to compete for resources is imperative. Thus, AHL-mediated signaling and inhibition are considered to affect virulence in bacteria. In the current review, we focus on the synthesis and regulation mechanisms of AHLs and highlight their role in interspecies bacterial signaling. Exploring interspecies bacterial signaling will further help us understand host-pathogen interactions, thereby contributing to the development of therapeutic strategies intended to target chronic polymicrobial infections.

Wearable based Electrocardiogram Sensing Clothes for Monitoring of Vital Signal (생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복)

  • Yu, Ki-Youp;Han, Ki-Tae;Kim, Ju-Hyun;Kim, Jong-Hun;Chung, Kyung-Yong;Lee, Jung-Hyun
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.277-278
    • /
    • 2009
  • 차세대 하이테크 스마트 의류는 복합 차원에서의 감성적인 요소를 섬유 패션기술에 IT융합 기술을 이용하여 제공하고 있다. 생체신호를 이용한 감성은 모호하여 정량적이고 객관적인 측정이 어렵고, 그 표현도 제한된 감성 어휘에 의하여 나타나기 때문에 구체적으로 파악하는 것은 어려운 일이다. 이를 위하여 제품의 기능적 측면뿐만 아니라 정서적 감정과 선호도가 반영된 제품의 설계나 디자인 또한 요구되고 있다. 본 논문에서는 생체신호 측정을 위한 웨어러블 기반의 심전도 측정 의복을 제안하였다. 착용자가 평소 자주 입는 티셔츠를 응용하여 답답해하거나 불편하지 않게 제작하고 소매 형태로 신축성있는 소재를 사용한다. 인체의 형태에 따라 의복과 바이오센서의 전극이 안정적으로 밀착될 수 있도록 고탄력 밴드를 이용하여 일자형으로 제작하였다. 심전도 측정 의복을 착용에 의해 수집된 심전도 ECG 파형을 수집하고 심박변화율을 계산하는 시뮬레이션을 개발한다.

Analyzing the factors that contribute to the development of embryological classical type of bladder exstrophy

  • Ria Margiana;Widya Juwita;Khoirul Ima;Zakiyatul Faizah;Supardi Supardi
    • Anatomy and Cell Biology
    • /
    • v.56 no.4
    • /
    • pp.421-427
    • /
    • 2023
  • Bladder exstrophy is a rare congenital condition of the pelvis, bladder, and lower abdomen that opens the bladder against the abdominal wall, produces aberrant growth, short penis, upward curvature during erection, wide penis, and undescended testes. Exstrophy affects 1/30,000 newborns. The bladder opens against the abdominal wall in bladder exstrophy, a rare genitourinary condition. This study is vital to provide appropriate therapy choices as a basis to improve patient outcomes. This study may explain bladder exstrophy and provide treatment. Epispadias, secretory placenta, cloacal exstrophy, and other embryonic abnormalities comprise the exstrophy-spades complex. The mesenchymal layer does not migrate from the ectoderm and endoderm layers in the first trimester, affecting the cloacal membrane. Embryological problems define the exstrophy-aspidistra complex, which resembles epimedium, classic bladder, cloacal exstrophy, and other diseases. Urogenital ventral body wall anomalies expose the bladder mucosa, causing bladder exstrophy. Genetic mutations in the Hedgehog cascade pathway, Wnt signal, FGF, BMP4, Alx4, Gli3, and ISL1 cause ventral body wall closure and urinary bladder failure. External factors such as high maternal age, smoking moms, and high maternal body mass index have also been associated to bladder exstrophy. Valproic acid increases bladder exstrophy risk; chemicals and pollutants during pregnancy may increase bladder exstrophy risk. Bladder exstrophy has no identified cause despite these risk factors. Exstrophy reconstruction seals the bladder, improves bowel function, reconstructs the vaginal region, and restores urination.

Respiratory air flow transducer calibration technique for forced vital capacity test (노력성 폐활량검사시 호흡기류센서의 보정기법)

  • Cha, Eun-Jong;Lee, In-Kwang;Jang, Jong-Chan;Kim, Seong-Sik;Lee, Su-Ok;Jung, Jae-Kwan;Park, Kyung-Soon;Kim, Kyung-Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.5
    • /
    • pp.1082-1090
    • /
    • 2009
  • Peak expiratory flow rate(PEF) is a very important diagnostic parameter obtained from the forced vital capacity(FVC) test. The expiratory flow rate increases during the short initial time period and may cause measurement error in PEF particularly due to non-ideal dynamic characteristic of the transducer. The present study evaluated the initial rise slope($S_r$) on the flow rate signal to compensate the transducer output data. The 26 standard signals recommended by the American Thoracic Society(ATS) were generated and flown through the velocity-type respiratory air flow transducer with simultaneously acquiring the transducer output signal. Most PEF and the corresponding output($N_{PEF}$) were well fitted into a quadratic equation with a high enough correlation coefficient of 0.9997. But only two(ATS#2 and 26) signals resulted significant deviation of $N_{PEF}$ with relative errors>10%. The relationship between the relative error in $N_{PEF}$ and $S_r$ was found to be linear, based on which $N_{PEF}$ data were compensated. As a result, the 99% confidence interval of PEF error was turned out to be approximately 2.5%, which was less than a quarter of the upper limit of 10% recommended by ATS. Therefore, the present compensation technique was proved to be very accurate, complying the international standards of ATS, which would be useful to calibrate respiratory air flow transducers.

The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling

  • Lee, Sung Ryul;Noh, Su Jin;Pronto, Julius Ryan;Jeong, Yu Jeong;Kim, Hyoung Kyu;Song, In Sung;Xu, Zhelong;Kwon, Hyog Young;Kang, Se Chan;Sohn, Eun-Hwa;Ko, Kyung Soo;Rhee, Byoung Doo;Kim, Nari;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.5
    • /
    • pp.389-399
    • /
    • 2015
  • Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc ($Zn^{2+}$) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of $Zn^{2+}$ activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular $Zn^{2+}$ levels are largely regulated by metallothioneins (MTs), $Zn^{2+}$ importers (ZIPs), and $Zn^{2+}$ transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of $Zn^{2+}$. However, these regulatory actions of $Zn^{2+}$ are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular $Zn^{2+}$ levels, $Zn^{2+}$-mediated signal transduction, impacts of $Zn^{2+}$ on ion channels and mitochondrial metabolism, and finally, the implications of $Zn^{2+}$ in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of $Zn^{2+}$.

Design and Implementation of IEEE 11073/HL7 Translation Gateway Based on U-Healthcare Application Service for M2M (M2M을 위한 U-헬스케어 응용 서비스 기반 IEEE 11073/HL7 변환 게이트웨이 설계 및 구현)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3B
    • /
    • pp.275-286
    • /
    • 2011
  • As the 21st century paradigm of healthcare service changes from post-therapeutic treatment to disease prevention and management in advance, the M2M-based u-healthcare application service is increasingly important. M2M-based u-healthcare application service uses mobile handsets equipped with sensors to measure vital information, and the medical staff in remote locations can manage the health of the patient or the public in real time. In this paper, IEEE/HL7 translation gateway, utilizing the gateway based on M2M u-healthcare application service structure, which is based on international standards, has been designed and implemented. Specifically, the gateway between ISO/IEEE 11073 standards and ANSI HL7 has been developed. The former defines the protocol for the exchange of information between the agent device and the manger devices for measuring and handling biological signal, and the latter defines the application layer protocol for the exchange of various healthcare information systems. Finally, in order to demonstrate the functionality of the proposed architecture, the M2M-based U-healthcare application service based on IEEE/HL7 translation gateway, utilizing the gateway, has been developed which can measure, collect and process a variety of vital signs such as ECG or SpO2.

Effect of Fabric Sensor Type and Measurement Location on Respiratory Detection Performance (직물센서의 종류와 측정 위치가 호흡 신호 검출 성능에 미치는 효과)

  • Cho, Hyun-Seung;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Hyeok-Jae;Lee, Jeong-Hwan;Kwak, Hwi-Kuen;Ko, Yun-Su;Chae, Je-Wook;Oh, Su-Hyeon;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2019
  • The purpose of this study was to investigate the effect of the type and measurement location of a fabric strain gauge sensor on the detection performance for respiratory signals. We implemented two types of sensors to measure the respiratory signal and attached them to a band to detect the respiratory signal. Eight healthy males in their 20s were the subject of this study. They were asked to wear two respiratory bands in turns. While the subjects were measured for 30 seconds standing comfortably, the respiratory was given at 15 breaths per minute were synchronized, and then a 10-second break; subsequently, the entire measurement was repeated. Measurement locations were at the chest and abdomen. In addition, to verify the performance of respiratory measurement in the movement state, the subjects were asked to walk in place at a speed of 80 strides per minute(SPM), and the respiratory was measured using the same method mentioned earlier. Meanwhile, to acquire a reference signal, the SS5LB of BIOPAC Systems, Inc., was worn by the subjects simultaneously with the experimental sensor. The Kruskal-Wallis test and Bonferroni post hoc tests were performed using SPSS 24.0 to verify the difference in measurement performances among the group of eight combinations of sensor types, measurement locations, and movement states. In addition, the Wilcoxon test was conducted to examine whether there are differences according to sensor type, measurement location, and movement state. The results showed that the respiratory signal detection performance was the best when the respiratory was measured in the chest using the CNT-coated fabric sensor regardless of the movement state. Based on the results of this study, we will develop a chest belt-type wearable platform that can monitor the various vital signal in real time without disturbing the movements in an outdoor environment or in daily activities.

Expression of Vimentin Intermediate Filament for Vascular Development in Olive Flounder (Paralichthys olivaceus)

  • Yang, Hyun;Lee, Jang-Wook;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Hwang, In Joon;Kim, Sung Yeon;Lee, Jeong-Ho
    • Development and Reproduction
    • /
    • v.18 no.2
    • /
    • pp.107-115
    • /
    • 2014
  • Cardiovascular system is the primary organ to develop and reach a functional state, which underscores the essential role of the vasculature in the developing embryo. The vasculature is a highly specialized organ that functions in a number of key physiological works including the carrying of oxygen and nutrients to tissues. It is closely involved in the formation of heart, and hence it is essential for survival during the hatching period. The expression of genes involved during vascular development in the olive flounder (Paralichthys olivaceus) in the days after hatching is not fully understood. Therefore, we examined the expression patterns of genes activated during the development of flounder. Microscopic observations showed that formation of blood vessels is related to the expression of the vimentin gene. Also, the temporal expression patterns of this vimentin-like gene in the developmental stages and in the normal tissues of olive flounder. The purpose of this study was to examine the expression patterns of vimentin in normal tissues of the olive flounder and during the development of the vascular system in newly hatched olive flounders and HIF-1 plays a vital role in the formation of blood vessels during development. Vimentin expression was strong at the beginning of the development of blood vessels, and was present throughout all developmental stages. Our findings have important implications with respect to the roles of vimentin and HIF-1 in the development and evolution of the first blood vessels in olive flounder. Further studies are required to elucidate the vimentin-mediated hypoxic response signal transduction and to decipher the functional role of vimentin in developmental stages.

A Study of Design Process for Sensor-based Smart clothing based on requirement engineering (요구공학을 적용한 센서기반 스마트 의류 디자인 프로세스 연구)

  • Cho, Hakyung;Lee, Joo Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.397-408
    • /
    • 2013
  • According to increase of concerning in health and entry of aging society, sensor-based smart clothing has developed various type and applications. Sensor-based smart clothing should be designed with considering of the interaction between a human body-device-clothing, such as accuracy of signal, wearability, suitability and the configuration of the sensor and so on. In this respect, these characteristics distinguish sensor-based smart clothing process from clothing process and Sensor-based smart clothing process is expected to be needing requirements Specification for development purpose and interoperability assessment based on requirements engineering. In this study, to assess efficiency of process based on requirement engineering, the sensor-based smart clothing process was deducted in two types by analysis of empirical performance. Presented two process were empirically evaluated through qualitative and quantitative evaluation. As a result, design process II based on requiments engineering were confirmed more effective process than processI.

  • PDF

Design of Real time Vital Signal Streaming Service Based on Self-Organizing Internet of Things Platform (자율군집 IoT 플랫폼기반 실시간 생체신호 스트리밍 서비스 설계)

  • Kim, Hyunho;Son, Taeyoung;Kang, Soonju
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.7
    • /
    • pp.434-439
    • /
    • 2017
  • More and more people are suffering from sleep disturbance, which can have many different causes. The healthcare industry, which can help people with this disability, is one technology that is currently in the spotlight. However, current services are vulnerable to data concentration, because they are simple telemedicine services that transmit all data to a remote server and process the data on the server. They have a disadvantage in that the data cannot be streamed in real time by synchronizing the biometric data of remotely protected persons. In order to solve this problem, we propose a service structure for streaming biometric data of protected persons to a hospital or guardian in real time, using a self-organizing distributed middleware platform without a central server. We prove that it is possible to provide an effective streaming service by evaluating the service start time and average delay time.