• Title/Summary/Keyword: Visualization of sensor information

Search Result 87, Processing Time 0.031 seconds

WSN Data Visualization using Augmented Reality (증강현실을 통한 WSN 데이터 가시화)

  • Park, Jin-Gwan;Jung, Min-A;Kim, Kyoung-Ho;Lee, Seong-Ro
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.107-116
    • /
    • 2013
  • We proposed the WSN monitoring system applied the augmented reality to visualize effectively an indoor WSN. To implement system, we used wireless sensor network, indoor location determination, location-based augmented reality technology. First, we composed the wireless sensor networks indoors and implement web server and then get data from server DB using Android phones. Then, we obtained the (x, y) coordinates using the triangulation method from RSSI of three point of the strongest signal strength of the AP's. Also, we adjusted coordinates using the Kalman filter. Finally, we inserted the adjusted coordinates to the latitude and the longitude of the Mixare that use the GPS signal, and we got location of user and wireless sensor in the server DB. After that, we implemented augmented reality system using the android phone and wireless sensor location and data and real life image.

Implementation of a Respiration Measurement System Based on a Nonrestraint Approach (무구속 방식의 호흡 측정 시스템 구현)

  • Cho, Seok-Hyang;Cho, Seung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.33-41
    • /
    • 2014
  • In this paper, we implemented a system to measure respiration rate with nonrestraint sensors comfortable for people to do their everyday life. The proposed system consists of a pad covered with a Piezoelectric sensor, a respiration measuring device able to send the signal data after amplifying and filtering the source signals to the viewer, a viewer providing sensor data visualization and implementing the respiration measuring algorithm. The algorithm is based on a breathing cycle with the local peak points extracted from threshold on sensor data. Respiration measurements on 3 subjects were performed by changing moving averages and thresholds. The proposed system showed less than 5% error rate when proper moving averages are N=50~60 and a range of thresholds is 800~1300. The system will contribute to preventing suffocation during sleep for infants and the elderly living alone.

The Study of automated inspection technology using a three-dimensional reconstruction of stereo X-ray image based dual-sensor Environment (Dual-Sensor 기반 스테레오 X-선 영상의 3차원 형상복원기술을 이용한 검색 자동화를 위한 연구)

  • Hwang, Young-Gwan;Lee, Nam-Ho;Kim, Jong-Ryul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.695-698
    • /
    • 2014
  • As most the scanning systems developed until now provide radiation scan plane images of the inspected objects, there has been a limitation in judging exactly the shape of the objects inside a logistics container exactly with only 2-D radiation image information. Two 2-dimensional radiation images which have different disparity values are acquired from a newly designed stereo image acquisition system which has one additional line sensor to the conventional system. Using a matching algorithm the 3D reconstruction process which find the correspondence between the images is progressed. In this paper, we proposed a new volume based 3D reconstruction algorithm and experimental results show the proposed new volume based reconstruction technique can provide more efficient visualization for cargo inspection. The proposed technique can be used for the development of the high speed and more efficient non-destructive auto inspection system.

  • PDF

Development of Mobile Volume Visualization System (모바일 볼륨 가시화 시스템 개발)

  • Park, Sang-Hun;Kim, Won-Tae;Ihm, In-Sung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.5
    • /
    • pp.286-299
    • /
    • 2006
  • Due to the continuing technical progress in the capabilities of modeling, simulation, and sensor devices, huge volume data with very high resolution are common. In scientific visualization, various interactive real-time techniques on high performance parallel computers to effectively render such large scale volume data sets have been proposed. In this paper, we present a mobile volume visualization system that consists of mobile clients, gateways, and parallel rendering servers. The mobile clients allow to explore the regions of interests adaptively in higher resolution level as well as specify rendering / viewing parameters interactively which are sent to parallel rendering server. The gateways play a role in managing requests / responses between mobile clients and parallel rendering servers for stable services. The parallel rendering servers visualize the specified sub-volume with rendering contexts from clients and then transfer the high quality final images back. This proposed system lets multi-users with PDA simultaneously share commonly interesting parts of huge volume, rendering contexts, and final images through CSCW(Computer Supported Cooperative Work) mode.

Development of Image-map Generation and Visualization System Based on UAV for Real-time Disaster Monitoring (실시간 재난 모니터링을 위한 무인항공기 기반 지도생성 및 가시화 시스템 구축)

  • Cheon, Jangwoo;Choi, Kyoungah;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.407-418
    • /
    • 2018
  • The frequency and risk of disasters are increasing due to environmental and social factors. In order to respond effectively to disasters that occur unexpectedly, it is very important to quickly obtain up-to-date information about target area. It is possible to intuitively judge the situation about the area through the image-map generated at high speed, so that it can cope with disaster quickly and effectively. In this study, we propose an image-map generation and visualization system from UAV images for real-time disaster monitoring. The proposed system consists of aerial segment and ground segment. In the aerial segment, the UAV system acquires the sensory data from digital camera and GPS/IMU sensor. Communication module transmits it to the ground server in real time. In the ground segment, the transmitted sensor data are processed to generate image-maps and the image-maps are visualized on the geo-portal. We conducted experiment to check the accuracy of the image-map using the system. Check points were obtained through ground survey in the data acquisition area. When calculating the difference between adjacent image maps, the relative accuracy was 1.58 m. We confirmed the absolute accuracy of the image map for the position measured from the individual image map. It is confirmed that the map is matched to the existing map with an absolute accuracy of 0.75 m. We confirmed the processing time of each step until the visualization of the image-map. When the image-map was generated with GSD 10 cm, it took 1.67 seconds to visualize. It is expected that the proposed system can be applied to real - time monitoring for disaster response.

Internet of Things-Based Command Center to Improve Emergency Response in Underground Mines

  • Jha, Ankit;Verburg, Alex;Tukkaraja, Purushotham
    • Safety and Health at Work
    • /
    • v.13 no.1
    • /
    • pp.40-50
    • /
    • 2022
  • Background: Underground mines have several hazards that could lead to serious consequences if they come into effect. Acquiring, evaluating, and using the real-time data from the atmospheric monitoring system and miner's positional information is crucial in deciding the best course of action. Methods: A graphical user interface-based software is developed that uses an AutoCAD-based mine map, real-time atmospheric monitoring system, and miners' positional information to guide on the shortest route to mine exit and other locations within the mine, including the refuge chamber. Several algorithms are implemented to enhance the visualization of the program and guide the miners through the shortest routes. The information relayed by the sensors and communicated by other personnel are collected, evaluated, and used by the program in proposing the best course of action. Results: The program was evaluated using two case studies involving rescue relating to elevated carbon monoxide levels and increased temperature simulating fire scenarios. The program proposed the shortest path from the miner's current location to the exit of the mine, nearest refuge chamber, and the phone location. The real-time sensor information relayed by all the sensors was collected in a comma-separated value file. Conclusion: This program presents an important tool that aggregates information relayed by sensors to propose the best rescue strategy. The visualization capability of the program allows the operator to observe all the information on a screen and monitor the rescue in real time. This program permits the incorporation of additional sensors and algorithms to further customize the tool.

The design of 4S-Van for implementation of ground-laser mapping system (지상 레이져 매핑시스템 구현을 위한 4S-Van 시스템 설계)

  • 김성백;이승용;김민수
    • Spatial Information Research
    • /
    • v.10 no.3
    • /
    • pp.407-419
    • /
    • 2002
  • In this study, the design of 4S-Van system is discussed fur the implementation of laser mapping system. Laser device is fast and accurate sensor that acquires 3D road and surface data. The orientation laser sensor is determined by loosely coupled (D)GPS/INS Integration. Considering current system architecture, (D)GPS/INS integration is performed far performance analysis of direct georeferencing and self-calibration is performed for interior and exterior orientation and displacement. We utilized 3 laser sensors for compensation and performance improvement. 3D surface data from laser scanner and texture image from CCD camera can be used to implement 3D visualization.

  • PDF

Adaptive Histogram Projection And Detail Enhancement for the Visualization of High Dynamic Range Infrared Images

  • Lee, Dong-Seok;Yang, Hyun-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.23-30
    • /
    • 2016
  • In this paper, we propose an adaptive histogram projection technique for dynamic range compression and an efficient detail enhancement method which is enhancing strong edge while reducing noise. First, The high dynamic range image is divided into low-pass component and high-pass component by applying 'guided image filtering'. After applying 'guided filter' to high dynamic range image, second, the low-pass component of the image is compressed into 8-bit with the adaptive histogram projection technique which is using global standard deviation value of whole image. Third, the high-pass component of the image adaptively reduces noise and intensifies the strong edges using standard deviation value in local path of the guided filter. Lastly, the monitor display image is summed up with the compressed low-pass component and the edge-intensified high-pass component. At the end of this paper, the experimental result show that the suggested technique can be applied properly to the IR images of various scenes.

The Monitoring System for Prediction Life-time and Visualization scheme of Coverage on WSN (무선 센서네트워크에서 coverage 가시화 기법 및 수명예측 모니터링 시스템)

  • Park, Sun-mi;Baek, Sung-jin;Yang, Su-Hyun;Kim, Kwon-Hwan;Song, Eun-Ha;Park, Doo-Soon;Jeong, Young-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2010.11a
    • /
    • pp.1718-1720
    • /
    • 2010
  • 저 전력 무선 센서 네트워크와 마이크로 센서를 결합하여 환경이나 상황을 인지하고 모니터링을 통해 수집된 정보를 사람에게 전하는 WSN(Wireless Sensor Network) 기술에 대한 많은 연구가 진행되고 있다. 본 논문은 바이너리 모델을 사용하여 단순 탐지 확률을 표현하는 기존 시뮬레이터들의 Coverage 표현의 한계를 극복하기 위해 Heat-map을 이용한 시뮬레이터를 개발했다. 이 시스템은 기존 바이너리 모델을 확장하고, GIS를 사용하여 지형정보를 함께 가시화함으로써 서비스 지형에 대한 센서 네트워크 구성뿐만 아니라 수명예측 메커니즘을 이용한 에너지 소모에 따른 노드의 수명을 가시화 한다.

Development of a HTML5-based Component for Visualization of Distributed IoT Sensor Data (분산 IoT센서를 연결하는 HTML5기반 데이터 시각화 컴포넌트 개발)

  • Choi, Soon-Hyuck;Kim, Sung-Ki
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1804-1806
    • /
    • 2015
  • 넓은 공간에 대한 물리량 감시응용에서는 다수의 IoT센서가 분산될 수 있으며, 개별 센서의 데이터를 식별하는 것 못지않게 총량의 통계적 변화를 직관성 있게 판단할 수 있도록 돕는 데이터 시각화 도구가 필요하다. 본 연구에서는 라즈베리파이를 IoT센서로 보고, 분산된 복수의 IoT센서들로부터 현장의 물리량 측정값을 모아, 사용자가 단말을 통해 현장의 물리량 변화 상황을 직관성 있게 판단할 수 있도록 돕는 시각화 컴포넌트를 개발하였다. 본 논문에서는 이러한 목적의 시각화 컴포넌트를 브라우저에 독립적인 구현을 지원하도록 HTML5 기반 웹 컴포넌트를 개발하였다.