• 제목/요약/키워드: Visualization of Performance

검색결과 675건 처리시간 0.026초

충격파관 내 천음속 익형 유동의 가시화 (Visualization of Transonic Airfoil Flows in a Shock Tube)

  • 장호근;권진경;김병지;권순범;김명수
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

가시화 엔진을 이용한 직분식 디젤 엔진의 분무 연소 특성에 관한 연구 (A study on the spray combustion characteristics of D.I. diesel engine using visualization engine system)

  • 정재우;이기형;최석우;김병수
    • 한국분무공학회지
    • /
    • 제4권4호
    • /
    • pp.17-23
    • /
    • 1999
  • Recently, many researchers have been studied a D.I. diesel engine because of the exhaust gas restriction and fuel consumption performance. It is well known that the fuel injection characteristics are the key factors on the diesel combustion and exhaust emission. In this study, the fuel injection characteristics of 5-hole injector and the combustion characteristics are investigated with the amount of fuel by means of the visualization method and visualization D.I. diesel engine system. As the results of the experiments, the spray pattern of the fuel injection and the diffusion flame of a D.I. diesel engine are clarified. In addition, combustion phenomena with operation conditions such as engine speed and engine load are made clear.

  • PDF

수중익에서 발생하는 보텍스 유동 가시화 연구 (Study on visualization of vortex flow on hydrofoils)

  • 홍지우;안병권
    • 한국가시화정보학회지
    • /
    • 제19권2호
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Teaching Pronunciation Using Sound Visualization Technology to EFL Learners

  • Min, Su-Jung;Pak, Hubert H.
    • 영어어문교육
    • /
    • 제13권2호
    • /
    • pp.129-153
    • /
    • 2007
  • When English language teachers are deciding on their priorities for teaching pronunciation, it is imperative to know what kind of differences and errors are most likely to interfere with communication, and what special problems particular first-language speakers will have with English pronunciation. In other words, phoneme discrimination skill is an integral part of speech processing for the EFL learners' learning to converse in English. Training using sound visualization technique can be effective in improving second language learners' perceptions and productions of segmental and suprasegmental speech contrasts. This study assessed the efficacy of a pronunciation training that provided visual feedback for EFL learners acquiring pitch and durational contrasts to produce and perceive English phonemic distinctions. The subjects' ability to produce and to perceive novel English words was tested in two contexts before and after training; words in isolation and words in sentences. In comparison with an untrained control group, trainees showed improved perceptual and productive performance, transferred their knowledge to new contexts, and maintained their improvement three months after training. These findings support the feasibility of learner-centered programs using sound visualization technique for English language pronunciation instruction.

  • PDF

화상 분석을 통한 선박 방오도료의 성능 평가 (Image Analysis Method for the Performance Evaluation of Marine Antifouling Coatings)

  • 박현;전호환;이인원
    • 한국가시화정보학회지
    • /
    • 제11권2호
    • /
    • pp.18-26
    • /
    • 2013
  • An accurate and reliable performance evaluation technique is indispensable for the development of marine antifouling coatings. The existing standard practice is however, based on the visual observation of biofouling settlement area, which is prone to the subjective judgment of the inspector. In spite of the above mentioned importance, a systematic and objective fouling evaluation technique has not yet been introduced. In this study, a novel quantitative antifouling performance evaluation method for marine antifouling paints is devised based on the image analysis of panel immersion test results. The present image analysis method is to quantify settlement area for each fouling category by distinctive color. The fouling categories are set as unfouled, biofilm, green algae, brown algae, calcareous animal and spongy animal with specific HSL (Hue, Saturation, Lightness) color ranges. In order to assess the effectiveness of the proposed method, static immersion tests for three antifouling coatings were undertaken for two years.

전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석 (Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device)

  • 쑨휘;김준현;성재용
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.

가상현실 기반 자기부상열차 주행성능 가시화 (The VR based running performance visualization of the magnetic levitation train)

  • 차무현;이한민;한형석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 특별세미나 특별세션
    • /
    • pp.135-144
    • /
    • 2006
  • To investigate various running performances of the magnetic levitation train systematically, the performance evaluation system based on Modeling & Simulation(M&S) technology is demanded essentially When the VR(virtual reality) techniques are involved, we can not only evaluate the M&S results more effectively and realistically, but also make optimum engineering decision. At the viewpoint of visualization of core engineering data like the train's running performance, there are no many cases of study which provide optimum decision information with the maximized reality and immersion environments through computer user interactions. In this study, the running performance simulation system which provides the VR based 3-dimensional visual information from the M&S results is being developed.

  • PDF

성능 저하 식별을 통한 저전력 개선용 코드 가시화 방법 (Code Visualization Approach for Low level Power Improvement via Identifying Performance Dissipation)

  • 안현식;박보경;김영철;김기두
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권10호
    • /
    • pp.213-220
    • /
    • 2020
  • 높은 사양이 필요한 하드웨어 기반의 모바일 및 IoT 임베디드 시스템은 저전력과 성능에 중요한 이슈를 갖고 있다. 이는 전력 소비로 발열량 증가 및 기기의 수명 단축 문제가 발생된다. 이러한 환경에서 소프트웨어도 제한된 전력, 메모리 등에서 안정적인 동작을 수행해야하므로 디바이스의 소비전력이 증가한다. 이를 해결하고자, 코드 관점에서 성능을 저하시키는 모듈을 식별하고, 그 모듈의 전력 최소화를 통한 성능 개선 가시화 방법을 제안한다. 이는 코드 가시화를 통해 복잡한 모듈(특히 Cyclomatic complexity, Coupling & Cohesion)을 식별하고, 저전력 코드 패턴화와 성능 코드를 간결화 한다. 이런 코드로 소비전력을 감소 및 성능 개선 함으로써 코드의 품질을 최적화 할 수 있다.

온도 프로파일 가시화를 통한 프랙탈 구조 마이크로채널 히트싱크의 열수력학적 특성 최적화 (Direct Visualization of Temperature Profiles in Fractal Microchannel Heat Sink for Optimizing Thermohydrodynamic Characteristics)

  • 이한솔;곽노균
    • 한국가시화정보학회지
    • /
    • 제22권1호
    • /
    • pp.79-84
    • /
    • 2024
  • As microchips' degree of integration is getting higher, its cooling problem becomes important more than ever. One of the promising methods is using fractal microchannel heat sink by mimicking nature's Murray networks. However, most of the related works have been progressed only by numerical analysis. Perhaps such lack of direct experimental studies is due to the technical difficulty of the temperature and heat flux measurement in complex geometric channels. Here, we demonstrate the direct visualization of in situ temperature profile in a fractal microchannel heat sink. By using the temperature-sensitive fluorescent dye and a transparent Polydimethylsiloxane window, we can map temperature profiles in silicon-based fractal heat sinks with various fractal scale factors (a=1.5-3.5). Then, heat transfer rates and pressure drops under a fixed flow rate were estimated to optimize hydrodynamic and thermal characteristics. Through this experiment, we found out that the optimal factor is a=1.75, given that the differences in heat transfer among the devices are marginal when compared to the variances in pumping power. This work is expected to contribute to the development of high-performance, high-efficiency thermal management systems required in various industrial fields.