• Title/Summary/Keyword: Visualization of Performance

Search Result 683, Processing Time 0.037 seconds

3D Visualization of Discrete Event Simulation and Its Applications in Virtual Manufacturing

  • Zhong Yongmin;Yuan Xiaobu
    • International Journal of CAD/CAM
    • /
    • v.4 no.1
    • /
    • pp.19-32
    • /
    • 2004
  • This paper presents a new approach to create 3D visualization from discrete simulation results. This approach connects discrete event simulation directly to 3D animation with its novel methods that analyze and convert discrete simulation results into animation events to trigger 3D animation. In addition, it constructs a 3D animation framework for the visualization of discrete simulation results. This framework supports the reuse of both the existing 3D animation objects and behavior components, and allows the rapid development of new 3D animation objects by users with no special knowledge in computer graphics. This approach has been implemented with the software component technology. As an application in virtual manufacturing, visualizations of an electronics assembly factory are also provided in the paper to demonstrate the performance of this new approach.

Visualization of Transonic Airfoil Flows in a Shock Tube (충격파관 내 천음속 익형 유동의 가시화)

  • Jang Ho-Keun;Kwon Jin-Kyung;Kim Byung-Ji;Kwon Soon-Bum;Kim Myung-Su
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.68-71
    • /
    • 2004
  • The experiments for NACA airfoils are conducted as the preliminary study for the aerodynamic characteristics of the transonic airfoil flow in the shock tube. The test section configurations were designed to use shock tube as simple and less costly experimental facility generating transonic flow at relatively high Reynolds numbers. Experiments at hot gas Mach numbers of 0.80, 0.82 and 0.84, Reynolds numbers of about $1.2\times10^6$ on airfoil chord length and angle of attack of $0^{\circ}\;and\;2^{\circ}$ were carried out by means of shadowgraph visualization method and static pressure measurements. Visualization results were compared with the corresponding results from the conventional transonic wind tunnel tests. The results of study showed that present shock tube facility is useful to study the proper performance characteristics in transonic Mach number range.

  • PDF

A study on the spray combustion characteristics of D.I. diesel engine using visualization engine system (가시화 엔진을 이용한 직분식 디젤 엔진의 분무 연소 특성에 관한 연구)

  • Chung, J.W.;Lee, K.H.;Choi, S.W.;Kim, B.S.
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.17-23
    • /
    • 1999
  • Recently, many researchers have been studied a D.I. diesel engine because of the exhaust gas restriction and fuel consumption performance. It is well known that the fuel injection characteristics are the key factors on the diesel combustion and exhaust emission. In this study, the fuel injection characteristics of 5-hole injector and the combustion characteristics are investigated with the amount of fuel by means of the visualization method and visualization D.I. diesel engine system. As the results of the experiments, the spray pattern of the fuel injection and the diffusion flame of a D.I. diesel engine are clarified. In addition, combustion phenomena with operation conditions such as engine speed and engine load are made clear.

  • PDF

Study on visualization of vortex flow on hydrofoils (수중익에서 발생하는 보텍스 유동 가시화 연구)

  • Hong, Ji-Woo;Ahn, Byoung-Kwon
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • In order to design a propeller with high efficiency and excellent cavitation performance, theoretical and experimental studies on the cavitation and noise characteristics according to the blade section shape are essential. In general, sheet cavitation, bubble cavitation, and cloud cavitation are the main causes of hull vibration and propeller surface erosion. However vortex cavitation, which has the greatest influence on the noise level because the fastest CIS in ship propeller, has been researched for a long time and studies have been conducted recently to control it. In this experiment, the development process of cavitation was measured by using three dimensional wings with two different wing section and wing tip shapes, and the noise level at that time was evaluated. In addition, we evaluated the relationship between cavitation inception and hydrodynamic force using three component load cell and we measured the velocity field of wing wake using LDV.

Teaching Pronunciation Using Sound Visualization Technology to EFL Learners

  • Min, Su-Jung;Pak, Hubert H.
    • English Language & Literature Teaching
    • /
    • v.13 no.2
    • /
    • pp.129-153
    • /
    • 2007
  • When English language teachers are deciding on their priorities for teaching pronunciation, it is imperative to know what kind of differences and errors are most likely to interfere with communication, and what special problems particular first-language speakers will have with English pronunciation. In other words, phoneme discrimination skill is an integral part of speech processing for the EFL learners' learning to converse in English. Training using sound visualization technique can be effective in improving second language learners' perceptions and productions of segmental and suprasegmental speech contrasts. This study assessed the efficacy of a pronunciation training that provided visual feedback for EFL learners acquiring pitch and durational contrasts to produce and perceive English phonemic distinctions. The subjects' ability to produce and to perceive novel English words was tested in two contexts before and after training; words in isolation and words in sentences. In comparison with an untrained control group, trainees showed improved perceptual and productive performance, transferred their knowledge to new contexts, and maintained their improvement three months after training. These findings support the feasibility of learner-centered programs using sound visualization technique for English language pronunciation instruction.

  • PDF

Image Analysis Method for the Performance Evaluation of Marine Antifouling Coatings (화상 분석을 통한 선박 방오도료의 성능 평가)

  • Park, Hyun;Chun, Ho Hwan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.18-26
    • /
    • 2013
  • An accurate and reliable performance evaluation technique is indispensable for the development of marine antifouling coatings. The existing standard practice is however, based on the visual observation of biofouling settlement area, which is prone to the subjective judgment of the inspector. In spite of the above mentioned importance, a systematic and objective fouling evaluation technique has not yet been introduced. In this study, a novel quantitative antifouling performance evaluation method for marine antifouling paints is devised based on the image analysis of panel immersion test results. The present image analysis method is to quantify settlement area for each fouling category by distinctive color. The fouling categories are set as unfouled, biofilm, green algae, brown algae, calcareous animal and spongy animal with specific HSL (Hue, Saturation, Lightness) color ranges. In order to assess the effectiveness of the proposed method, static immersion tests for three antifouling coatings were undertaken for two years.

Analysis of heat and fluid flows in an instant water heater according to design parameters of an electric heat device (전기히터의 설계 변수에 따른 순간온수기 열유동 특성 해석)

  • Hui Sun;Joon Hyun Kim;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.23-32
    • /
    • 2023
  • This study aims to explore the heat transfer and flow phenomena inside an instant water heater and the influence of the design parameters of the water heater on the heating performance was investigated by 3-D numerical simulations considering heat convection. The design parameters are the heating ceramic dimension, the power of the heating device, and the water flow rate. The results show that a reasonable space for the heating device is required to optimize the heating performance. It is desirable to design higher heating device as possible for a given electric power. There exists a critical water flow rate that best meets the heating performance. The change in electric power has no impact on the flow phenomena and heating performance.

The VR based running performance visualization of the magnetic levitation train (가상현실 기반 자기부상열차 주행성능 가시화)

  • Cha, Moo-Hyun;Lee, Han-Min;Han, Hyung-Suk
    • Proceedings of the KSR Conference
    • /
    • 2006.11a
    • /
    • pp.135-144
    • /
    • 2006
  • To investigate various running performances of the magnetic levitation train systematically, the performance evaluation system based on Modeling & Simulation(M&S) technology is demanded essentially When the VR(virtual reality) techniques are involved, we can not only evaluate the M&S results more effectively and realistically, but also make optimum engineering decision. At the viewpoint of visualization of core engineering data like the train's running performance, there are no many cases of study which provide optimum decision information with the maximized reality and immersion environments through computer user interactions. In this study, the running performance simulation system which provides the VR based 3-dimensional visual information from the M&S results is being developed.

  • PDF

Code Visualization Approach for Low level Power Improvement via Identifying Performance Dissipation (성능 저하 식별을 통한 저전력 개선용 코드 가시화 방법)

  • An, Hyun Sik;Park, Bokyung;Kim, R.Young Chul;Kim, Ki Du
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.10
    • /
    • pp.213-220
    • /
    • 2020
  • The power consumption and performance of hardware-based mobile and IoT embedded systems that require high specifications are one of the important issues of these systems. In particular, the problem of excessive power consumption is because it causes a problem of increasing heat generation and shortening the life of the device. In addition, in the same environment, software also needs to perform stable operation in limited power and memory, thereby increasing power consumption of the device. In order to solve these issues, we propose a Low level power improvement via identifying performance dissipation. The proposed method identifies complex modules (especially Cyclomatic complexity, Coupling & Cohesion) through code visualization, and helps to simplify low power code patterning and performance code. Therefore, through this method, it is possible to optimize the quality of the code by reducing power consumption and improving performance.