• Title/Summary/Keyword: Visualization Attributes

Search Result 55, Processing Time 0.016 seconds

Design and Implementation of the Survival Game API Using Dependency Injection (의존성 주입을 활용한 서바이벌 게임 API 설계 및 구현)

  • InKyu Park;GyooSeok Choi
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.183-188
    • /
    • 2023
  • Game object inheritance and multiple components allow for visualization of system architecture, good code reuse, and fast prototyping. On the other hand, objects are more likely to rely on high latency between game objects and components, static casts, and lots of references to things like null pointers. Therefore, It is important to design a game in such a way so that the dependency of objects on multiple classes could be reduced and existing codes could be reused. Therefore, we designed the game to make the classes more modular by applying Dependency Injection and the design patterns proposed by the Gang of Four. Since these dependencies are attributes of the game object and the injection occurs only in the initialization pass, there is little performance degradation or performance penalty in the game loop. Therefore, this paper proposed an efficient design method to effectively reuse APIs in the design and implementation of survival games.

EDF: An Interactive Tool for Event Log Generation for Enabling Process Mining in Small and Medium-sized Enterprises

  • Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.6
    • /
    • pp.101-112
    • /
    • 2024
  • In this paper, we present EDF (Event Data Factory), an interactive tool designed to assist event log generation for process mining. EDF integrates various data connectors to improve its capability to assist users in connecting to diverse data sources. Our tool employs low-code/no-code technology, along with graph-based visualization, to help non-expert users understand process flow and enhance the user experience. By utilizing metadata information, EDF allows users to efficiently generate an event log containing case, activity, and timestamp attributes. Through log quality metrics, our tool enables users to assess the generated event log quality. We implement EDF under a cloud-based architecture and run a performance evaluation. Our case study and results demonstrate the usability and applicability of EDF. Finally, an observational study confirms that EDF is easy to use and beneficial, expanding small and medium-sized enterprises' (SMEs) access to process mining applications.

Diagnosis Model for Closed Organizations based on Social Network Analysis (소셜 네트워크 분석 기반 통제 조직 진단 모델)

  • Park, Dongwook;Lee, Sanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.6
    • /
    • pp.393-402
    • /
    • 2015
  • Human resources are one of the most essential elements of an organization. In particular, the more closed a group is, the higher the value each member has. Previous studies have focused on personal attributes of individual, such as medical history, and have depended upon self-diagnosis to manage structures. However, this method has weak points, such as the timeconsuming process required, the potential for concealment, and non-disclosure of participants' mental states, as this method depends on self-diagnosis through extensive questionnaires or interviews, which is solved in an interactive way. It also suffers from another problem in that relations among people are difficult to express. In this paper, we propose a multi-faced diagnosis model based on social network analysis which overcomes former weaknesses. Our approach has the following steps : First, we reveal the states of those in a social network through 9 questions. Next, we diagnose the social network to find out specific individuals such as victims or leaders using the proposed algorithm. Experimental results demonstrated our model achieved 0.62 precision rate and identified specific people who are not revealed by the existing methods.

A Pixel-based Assessment of Urban Quality of Life (도시의 삶의 질을 평가하기 위한 화소기반 기법)

  • Jun, Byong-Woon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.146-155
    • /
    • 2006
  • A handful of previous studies have attempted to integrate socioeconomic data and remotely sensed data for urban quality of life assessment with their spatial dimension in a zonal unit. However, such a zone-based approach not only has the unrealistic assumption that all attributes of a zone are uniformly spatially distributed throughout the zone, but also has resulted in serious methodological difficulties such as the modifiable areal unit problem and the incompatibility problem with environmental data. An alternative to the zone-based approach can be a pixel-based approach which gets its spatial dimension through a pixel. This paper proposes a pixel-based approach to linking remotely sensed data with socioeconomic data in GIS for urban quality of life assessment. The pixel-based approach uses dasymetric mapping and spatial interpolation to spatially disaggregate socioeconomic data and integrates remotely sensed data with spatially disaggregated socioeconomic data for the quality of life assessment. This approach was implemented and compared with a zone-based approach using a case study of Fulton County, Georgia. Results indicate that the pixel-based approach allows for the calculation of a microscale indicator in the urban quality of life assessment and facilitates efficient data integration and visualization in the assessment although it costs an intermediate step with more processing time such as the disaggregation of zonal data. The results also demonstrate that the pixel-based approach opens up the potential for the development of new database and increased analytical capabilities in urban analysis.

  • PDF

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.