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요    약
소수의 선행연구는 도시의 삶의 질을 평가하기 위해서 구역을 단위로 사회경제적인 자료와 원격

탐사자료를 통합하려고 시도했다. 그러나 이러한 구역을 기반으로 한 접근방법은 한 단위구역의 모

든 속성이 그 구역 내에서 균등하게 분포되어 있다고 비현실적으로 전제할 뿐만 아니라, 임의적 지

역구획문제 (MAUP) 및 화소기반 환경자료와의 통합이 용이하지 않은 점과 같은 심각한 방법론적 

어려움을 초래한다. 구역기반 접근방법에 대한 한 가지 대안은 기본적인 공간단위로서 화소를 이용

하는 화소기반 접근방법이다. 본 연구에서는 도시의 삶의 질을 평가하기 위해서 GIS에서의 사회경

제적인 자료와 원격탐사자료를 연계하기 위한 화소기반 접근방법을 제시하고자 한다. 화소기반 접

근방법은 삶의 질을 평가하기 위해서 구역기반의 사회경제적인 자료를 개별 화소들로 더욱 세분화

시키려고 밀도 구분도와 공간 내삽법의 원리를 이용하고, 그 세분화된 사회경제적인 자료와 원격탐

사자료를 통합한다. 이러한 화소기반 접근방법은 조지아 풀톤 카운티에 대한 사례연구에서 적용되

었고, 같은 사례지역에서의 구역기반 접근방법과도 비교되었다. 본 연구에서 도시의 삶의 질을 평가

하기 위한 화소기반 접근방법은 구역단위의 사회경제적인 자료의 세분화를 위해서 많은 처리시간을 

필요로 하지만, 미시적인 지표의 산출을 용이하게 하고 사회경제적인 자료와 원격탐사자료간의 효

율적인 통합과 그러한 자료들의 시각화를 가능하게 하였다. 이러한 점에서, 본 연구는 화소기반 접

근방법이 도시 분석에 있어서 새로운 데이터베이스의 구축과 분석능력의 향상에 기여할 수 있다는 

가능성을 제시한다.

주요어 : 지리정보시스템, 위성영상, 밀도 구분적 지도화, 공간 내삽법, 도시 삶의 질

ABSTRACT
A handful of previous studies have attempted to integrate socioeconomic data and remotely 

sensed data for urban quality of life assessment with their spatial dimension in a zonal unit. 

However, such a zone-based approach not only has the unrealistic assumption that all 

attributes of a zone are uniformly spatially distributed throughout the zone, but also has 

resulted in serious methodological difficulties such as the modifiable areal unit problem and the
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incompatibility problem with environmental data. An alternative to the zone-based approach can 

be a pixel-based approach which gets its spatial dimension through a pixel. This paper 

proposes a pixel-based approach to linking remotely sensed data with socioeconomic data in 

GIS for urban quality of life assessment. The pixel-based approach uses dasymetric mapping 

and spatial interpolation to spatially disaggregate socioeconomic data and integrates remotely 

sensed data with spatially disaggregated socioeconomic data for the quality of life assessment. 

This approach was implemented and compared with a zone-based approach using a case study 

of Fulton County, Georgia. Results indicate that the pixel-based approach allows for the 

calculation of a microscale indicator in the urban quality of life assessment and facilitates 

efficient data integration and visualization in the assessment although it costs an intermediate 

step with more processing time such as the disaggregation of zonal data. The results also 

demonstrate that the pixel-based approach opens up the potential for the development of new 

database and increased analytical capabilities in urban analysis.

KEYWORDS : GIS, Satellite Image, Dasymetric Mapping, Spatial Interpolation, Urban Quality of Life

INTRODUCTION
Although the integrated use of remotely 

sensed data and GIS-based data has been 

explosively made for environmental 

applications, the integration for socioeconomic 

applications has received relatively less 

attention and has been rapidly developing in 

recent years (Martin and Bracken, 1993; 

Martin, 1996; Mesev, 2003). Several attempts 

have been made to integrate remotely sensed 

data with socioeconomic data in geographic 

information systems (GIS). One of the major 

socioeconomic applications is related to 

quality of life assessment. A handful of 

previous studies (Forster, 1983; Weber and 

Hirsh, 1992; Lo and Faber, 1997) have 

assessed quality of life indicators in urban 

areas by integrating biophysical variables 

derived from satellite images and 

socioeconomic variables extracted from 

census data. These studies demonstrated that 

such an integration provides a more detailed 

characterization of urban landscape than an 

approach based solely on socioeconomic data.

Despite their benefit, there is a 

fundamental technical problem, namely 

differences in areal units (Chen, 2002), 

inherent in the previous studies on urban 

quality of life assessment. Socioeconomic 

data are zonal data (e.g., census zones or 

administrative boundaries) while environmental 

data derived from remotely sensed images 

are per-pixel data (e.g., 30 m for Landsat 

TM images). Conceptually, these two areal 

units are not compatible. For their 

economical operation and computational 

feasibility, previous studies have aggregated 

pixel-based data to zonal units to tackle the 

incompatibility problem in areal units. 

However, the zone-based approach 

unrealistically assumes that all the 

socioeconomic data are uniformly distributed 

within zonal units and ignores the fact that 

socioeconomic activities and their impacts 

are continuous in space. This approach also 

has analytical pitfalls such as the modifiable 

areal unit problem (MAUP) and the 
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incompatibility problem with environmental 

data. Moreover, most urban analyses have 

become increasingly disaggregated in space, 

time, and substantive elements (Spiekermann 

and Wegener, 2000). As an alternative to 

the zone-based approach, a pixel-based 

approach can be used to spatially disaggregate 

socioeconomic data within an enumeration 

unit such as a census tract and a census 

block group into individual pixels. This topic 

has not been thoroughly studied in the GIS 

and remote sensing research community.

In this context, this paper proposes a 

pixel-based approach to integrating remotely 

sensed data and socioeconomic data in GIS 

for the quality of life assessment in an 

urban area. After a brief introduction, an 

overview of quality of life research is 

presented. The methodology is then 

introduced and followed by the results with 

a discussion of them. The last section 

contains concluding remarks and summary.

QUALITY OF LIFE RESEARCH
The quality of life of a population is an 

important concern in social sciences, but it 

has no consensus definition. According to 

sociologists, quality of life is a collective 

trait pertaining to groups of people, not to 

individuals. Various indicators consisting of 

both objective and subjective elements can 

be used to quantify it (Bederman and 

Hartshorn, 1984). Even though there is no 

single definition and no broadly accepted 

method to measure quality of life, it appears 

clear from the literature that some 

consensual objective indicators such as 

income, housing, education and crowding 

have been widely used to measure quality of 

life (Wallace, 1971; Smith, 1973; Liu, 1976). 

The majority of previous quality of life 

evaluation studies utilized only socioeconomic 

indicators from census data as exemplified 

by the works of Liu (1976) and Bederman 

and Hartshorn (1984).

Recent advances in satellite remote 

sensing and GIS technologies have helped to 

streamline the integration of socioeconomic 

data with remotely sensed data for urban 

studies (Mesev, 2003). With the increasing 

concern about environmental issues, 

biophysical data derived from remotely 

sensed images have been employed for 

quality of life assessment. Forster (1983) 

developed a residential quality index in the 

city of Sydney, Australia, using spectral 

reflectance values derived from Landsat MSS 

images. He employed house size and 

vegetation content as a positive indicator of 

quality and roads and nonresidential 

buildings as a negative indicator. Weber and 

Hirsch (1992) measured the urban life quality 

of Strasbourg, France, by combining the 

high-resolution SPOT XS image data with 

cartographic and census data. Most recently, 

Lo and Faber (1997) demonstrated the 

usefulness of Landsat TM image in 

conjunction with census data for quality of 

life assessment in a small city in Georgia 

with emphasis on NDVI as a desirable 

quality indicator of urban morphological 

environment. Lo and Faber argued that 

satellite image data could complement census 

data in providing an environmental 

perspective for the quality of life assessment. 

Therefore, the inclusion of environmental 

data has allowed for taking a more complete 

picture of the quality of life by relating 

environmental quality to social quality (Lo 
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and Faber, 1997). Based on the literature 

review, it is apparent that within the GIS 

and remote sensing research community, 

urban quality of life was measured with the 

use of scales or indices which coupled the 

socioeconomic with environmental data for a 

complete evaluation. The quality of life 

assessment can help urban planners and city 

decision-makers to find out any problem 

areas in the allocation of human services.

DATA AND METHODS
In this study, Fulton County, Georgia 

serves as a case study area where the core 

city of Atlanta is located as shown in 

Figure 1. The study area was chosen 

because of its urban heat island effect 

detected, degenerated air quality, water 

quality issues related to urban development 

downstream of the upper Chattahoochee 

River, and high levels of urban inequality 

based on racial segregation. The study area 

thus provides a unique urban setting for a 

quality of life assessment.

FIGURE 1. Location of study area

Figure 2 illustrates an overview of 
the research methodology implemented for 
this study. The quality of life in the 
study area was evaluated and mapped on 
the basis of demographic, economic, 
educational, housing, and environmental 
factors. Most of the criteria for 
quality of life assessment were selected 
as suggested by Lo and Faber (1997). Two 
major data sources include demographic 
and socioeconomic data from 1990 Census 
and environmental data from 1990 Landsat 
5 TM imagery.

FIGURE 2. Research methodology

From the Landsat TM image, derived 

were three environmental data such as land 

use and cover, normalized difference 

vegetation index (NDVI), and surface 

temperature. A land use and cover map was 

extracted from the Landsat TM image using 

a hybrid digital image classification and a 

modified version of the Anderson scheme of 
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land use and cover classification with mixed 

levels 1 and 2. From this land use and cover 

map, the low density residential, high density 

residential, commercial and industrial (urban 

use), forest, and agriculture (comprising 

grassland/pasture/cropland) classes were 

extracted and water and barren classes were 

excluded using a reclassification method. The 

overall accuracy of the land use and cover 

map was determined to be 87.5 percent. The 

classification accuracy is good enough to 

meet the minimum 85 percent accuracy 

requirement recommended by the Anderson 

classification scheme (Anderson et al., 1976) 

and thus is sufficient for further applications. 

From bands 3 and 4 of the Landsat TM 

image, NDVI was computed for each pixel 

using the following equation:

34
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where TM3 is band 3 of Landsat TM 

image and TM4 is band 4 of the image. The 

index varies from –1 to +1 as greenness 

increases. From the thermal infrared band, 

band 6 of the Landsat TM image, surface 

temperature for each pixel was also 

computed using the following equation 

proposed by Wukelic et al. (1989):
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where T(K) is effective at-satellite 

temperature in Kelvin, K2 is calibration 

constant 2 (=1260.56) in Kelvin, K1 is calibration 

constant 1 (=607.76) in w.m-2.ster-1.mm-1, and 

L is spectral radiance in w.m
-2
.ster

-1
.mm

-1
. 

Basically, this equation converts the spectral 

radiances of image pixels into at-satellite 

temperatures. The resultant at-satellite 

temperatures were then corrected for 

emissivity (ε) according to the nature of 
land cover. In general, vegetated areas are 

given a value of 0.95 and non-vegetated 

areas 0.92 (Nichol, 1994). This differentiation 

is based on the NDVI image calculated as 

described above. The emissivity corrected 

surface temperature (Ts) is computed as 

follows (Nichol, 1994): 

ε)T(K)/(
T(K)Ts

ln1 αλ+
=

                (3)

where λ is the wavelength of emitted 
radiance (= 11.5 μm), α is hc/k (1.438 * 10-2 
mK), k is Stefan-Bolzmann’s Constant (1.38 

* 10
-23
 J/K), h is Planck’s constant (6.26 * 

10-34 J-sec), c is velocity of light (2.998 * 

108 m/sec), and ε is surface emissivity. 
These absolute temperatures were then 

converted into Celsius (C) by subtracting the 

temperature of the ice point (273.15 K) from 

them because people understand temperatures 

in interval scale better.

From the census data, four variables 

including population density, median 

household income, median home value, and 

percent of college graduates were extracted 

at the census block group level. These four 

variables were adopted on the basis of the 

commonly agreed set of variables by social 

scientists to objectively measure the degree 

of quality of life. The block group represents 

the smallest enumeration unit for which both 

racial and income information is available. 

The boundary file for census block group 
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level was extracted from the 1990 Census 

TIGER/Line file. 

Three environmental variables are 

per-pixel data while four socioeconomic 

variables are zonal data. To link remotely 

sensed data with areal socioeconomic data, 

four socioeconomic variables were spatially 

disaggregated into individual pixels because 

of zone-based approach’s unrealistic 

assumption and analytical pitfalls as 

mentioned in the first section. Two 

demographic variables, population density 

and percent of college graduates, were 

transformed into each pixel based on the 

principle of dasymetric mapping similar to 

the binary dasymetric procedure described by 

Fisher and Langford (1996), but extended to 

employ five classes of land use and cover. 

Dasymetric mapping uses ancillary data 

about the spatial distribution of population to 

aid population density mapping unlike 

choropleth mapping. In this study, land use 

and cover data derived from the Landsat 

TM image were used as ancillary data in 

the dasymetric mapping. A population 

weighting scheme was used to assign 

population data to five different land use and 

cover classes within the study area. For 

census block groups with all five land use 

and cover classes present, 30 percent of the 

data for each census block group was 

assigned to low density residential pixels, 40 

percent to high density residential pixels, 15 

percent to commercial and industrial pixels, 5 

percent to forested pixels, and 10 percent to 

agricultural pixels. The weighting percentages 

were subjectively determined on the basis of 

a visual estimation of the geographic 

distribution of population in the study area. 

Two economic variables, median household 

income and median home value, were converted 

to each pixel using a spatial interpolation 

method known as inverse distance weighting 

(IDW) because unlike spatially extensive 

data such as population, these variables are 

spatially intensive data which are expected 

to have the same value in each part of a 

zone (Goodchild and Lam, 1980).

A cartographic modeling analysis was 

adopted in this research to integrate and 

transform environmental and socioeconomic 

variables into a resultant quality of life score 

for each pixel. The process involves three 

main stages. In the first stage, the values in 

each data layer were ranked by equally 

dividing them into 10 classes. The value of 

rank scores ranges from 1 to 10, with 1 

being the lowest and 10 being the highest. 

Due to its easy and economical operation, a 

scale of 10 to rank each data layer was 

used. In the second stage, the rank scores in 

each data layer were aggregated to generate 

the overall rank scores using a decision rule 

based on a weighted linear combination 

(WLC) method. This operation was achieved 

by the GIS overlay (add) function in 

ArcView GIS. In this study, there was no 

weighting made on the rank scores of each 

data layer. In the final stage, the aggregated 

rank scores were classified into five ordinal 

levels using Jenks optimization method 

which minimizes the in-class differences and 

maximizes the inter-class differences 

(Slocum et al., 2005).

RESULTS AND DISCUSSION
This research identified seven factors as 

being relevant to the determination of the 

quality of life in Fulton County in 1990. The 
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seven factors are divided into two major 

groups such as positive and negative factor 

for the quality of life assessment. The 

positive factor includes NDVI, median 

household income, median home value, and 

percentage of college graduates. The higher 

values in the four positive factors represent 

more desirable to the quality of life. The 

negative factor contains population density, 

urban use, and surface temperatures. The 

higher values in the three negative factors 

indicate less desirable to the quality of life. 

Unlike the other two negative factors, the 

values of the urban use variable were 

assigned to one of 10 rank scores with 1 

being the commercial and industrial class 

and 10 being the residential class in order to 

reflect the undesirability to the quality of 

life, but the other land use and cover classes 

including forest and agriculture were 

excluded from the ranking.

Figure 3 shows the overall quality of 

life score map generated by the 

pixel-based approach. Because the values 

of each factor were ranked from 1 to 10 

according to the relative desirability to the 

quality of life, the possible overall quality 

of life score can range from 1 to 70. 

However, the best quality of life score in 

this study is 59 while the worst one is 1. 

The highest quality of life score was 

found around Buckhead, the junction of 

Interstates 75 and 85, some portions of 

Roswell and Alpharetta, and the 

northeastern parts of Fulton County along 

Georgia 400 whereas the lowest quality of 

life score was found around the 

southwestern parts and the most northern 

parts of Fulton County and some portions 

of the central city of Atlanta. The areas 

with the highest quality of life score are 

characterized by the highest median 

household income, the highest median 

home value, the higher NDVI, the lower 

surface temperature, very high percentage 

of college graduates, lower population 

density, and lower percentage of urban 

use. In contrast, the places with the 

lowest quality of life score are 

characterized by lower median household 

income, lower median home value, and 

lower percentage of college graduates. The 

southern half of Fulton County showed 

relatively lower quality of life scores than 

the northern half.

FIGURE 3. Urban quality of life scores by 

pixel-based approach

The urban quality of life score map 

generated by the pixel-based approach 
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was compared with that by a zone-based 

approach. In case of the zone-based 

approach, three environmental variables 

were spatially aggregated into census 

block groups to integrate remotely sensed 

data with areal socioeconomic data. Figure 

4 shows the overall quality of life score 

map generated by the zone-based 

approach. In this case, the highest quality 

of life score is 68 while the lowest one is 

14. The spatial distribution of the highest 

quality of life score was similar to that of 

the pixel-based approach, but the 

pixel-based approach reveals the sub-unit 

or microscale variation in the quality of 

life scores. Although the pixel-based 

approach costs an intermediate step such 

as the disaggregation of zonal data with 

more processing time, it facilitates 

integrating remotely sensed and 

socioeconomic data and visualizing them in 

the quality of life assessment. The spatial 

distribution of the lowest quality of life 

score was somewhat different from that of 

the pixel-based approach. The lowest 

quality of life score was found around the 

central city of Atlanta. The places with 

the lowest quality of life score are 

characterized by lower median household 

income, lower median home value, lower 

percentage of college graduates, lower 

NDVI, higher population density, higher 

surface temperature, and higher percentage 

of urban use. The results from the 

zone-based approach confirmed that the 

major urbanized areas and the southern half 

of Fulton County had relatively lower 

quality of life scores than their counterparts.

FIGURE 4. Urban quality of life scores by 

zone-based approach

Despite its advantages, there are several 

issues to be taken into consideration for the 

pixel-based approach to urban quality of life 

assessment. First, the pixel-based approach 

to urban quality of life assessment can be 

regarded as a spatial decision problem under 

the conditions of uncertainty since there is 

no objectively optimal solution. The 

cartographic modeling analysis used in this 

study is a subjective approach to determine 

the quality of life score. To complement this 

approach, alternative objective approaches 

from multicriteria evaluation techniques and 

multispectral remote sensing image analysis 

can be used to integrate and transform the 

seven variables into a resultant quality of 

life score for each pixel.

Second, the dasymetric mapping method 
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used to spatially disaggregate two 

demographic variables, population density 

and percent of college graduates, into 

individual pixels suffers from two 

weaknesses. In the dasymetric mapping 

process, the weighting percentages are 

subjectively determined and the differences 

in area among the five land use and cover 

classes within a census block group are not 

considered. An alternative approach to 

dasymetric mapping is needed to address the 

two weaknesses and improve the accuracy 

of the redistribution of population.

Third, it is necessary to explore the 

optimal cell size for the dasymetric mapping 

method. Since the land use and cover data 

derived from the Landsat TM image were 

initially converted to a 30-m-resolution 

raster grid, this grid cell size serves as the 

resolution for the raster population surfaces 

generated by the dasymetric mapping 

method. However, the choice of grid cell size 

must be made according to the 

computational complexity and the resolution 

capacity to capture the desired spatial 

variation of population within the area of 

interest.

CONCLUSION
This research demonstrated a pixel-based 

approach to integrating remotely sensed data 

and socioeconomic data for urban quality of 

life assessment. Two techniques were 

presented that spatially disaggregate areal 

socioeconomic data into individual pixels for 

the quality of life assessment. The first 

technique suggests a dasymetric mapping 

method to disaggregate areal demographic 

data into individual pixels. The second 

technique is the use of a spatial interpolation 

method to disaggregate zonal economic data 

into individual pixels. These spatial 

microsimulation techniques not only assist in 

calculating a microscale or sub-unit indicator 

in the urban quality of life assessment, but 

also streamline the efficient integration of 

remotely sensed data with socioeconomic 

data and visualization of the two data in the 

assessment at the cost of more processing 

time. In other words, the pixel-based 

approach to urban quality of life assessment 

allows for more microscopic evaluation than 

is possible with the zone-based approach.

In this manner, this research implies that 

the pixel-based approach provides the 

potential for the development of new 

database and increased analytical capabilities 

in urban analysis. This methodological 

challenge will help to model hypothetical 

urban structures and to spur more 

socioeconomic applications with the use of 

remotely sensed data. This research may 

address a new research agenda relating to 

spatial microsimulation analysis within the 

field of geocomputation.
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