• Title/Summary/Keyword: Visual detection

Search Result 876, Processing Time 0.029 seconds

The Status of Damage and Monitoring of Subterranean Termite (Reticulitermes spp.) (Blattodea: Rhinotermitidae) for Wooden Cultural Heritage in Korea (국내 목조문화재에 대한 지중 흰개미 피해 및 모니터링 현황)

  • Im, Ik-Gyun;Cha, Hyun-Seok;Kang, Won-Chul;Lee, Sang-Bin;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.191-208
    • /
    • 2021
  • In this study, the status of damage by subterranean termites and their management according to the region and type of domestic wooden cultural properties were identified. This was based on the survey reports of agencies conducting regular nationwide and regional monitoring of subterranean termites. In addition, using geographical information system (GIS) based on the survey contents, a map was constructed of termite infestation and its progress on 2,805 wooden cultural properties that were surveyed nationwide. Based on the map produced, a total of 486 cases of termite infestation were confirmed in wooden cultural properties during 2018-2019, of which 143 cases (approximately 29.4%) were confirmed to be owing to the invasion of termites in the ground and infestation of wood materials. A web platform and an application using a mapping application program interface were created to increase accessibility to the investigated damage status data. The methods employed by each institution for investigating and monitoring the invasion of termites in the ground included the use of detection dogs, visual observation, installation of wood specimens made of pine, and microwave equipment. However, it was confirmed that monitoring and survey methods were not applied to determine the territorial range of the subterranean termite colonies. Accordingly, the use of dyeing and mark-release-recapture methods were deemed necessary to understand the current status, such as calculating the scope of the target wooden cultural property, when monitoring subterranean termite colonies.

Effect of Different Packaging Atmosphere on Microbiological Shelf Life, Physicochemical Attributes, and Sensory Characteristics of Chilled Poultry Fillets

  • Nauman, Kashif;Jaspal, Muhammad Hayat;Asghar, Bilal;Manzoor, Adeel;Akhtar, Kumayl Hassan;Ali, Usman;Ali, Sher;Nasir, Jamal;Sohaib, Muhammad;Badar, Iftikhar Hussain
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.153-174
    • /
    • 2022
  • This trial was conducted to evaluate the effect of overwrap, vacuum, and modified atmosphere packaging (MAP) on poultry breast fillets' microbiological, biochemical shelf life and sensory attributes. The fillets were divided into 4 groups, and each of the treatments was replicated 3 times with 60 breast fillets. The first group was a control group with overwrap packaging; the second group was vacuum packed (VP); the third and fourth groups were MAP-1: 0% O2, 40% CO2, 60% N2, and MAP-2: 20% O2, 40% CO2, 40% N2. The microbiological and biochemical analyses were performed for the total viable count, coliform count, Pseudomonas count, Salmonella count, total volatile basic nitrogen (TVB-N), pH, cooking loss, color, lipid oxidation, tenderness, and sensory analysis. The data were analysed through two-way ANOVA by Minitab (Minitab 17.3.1). Meat treated with understudy MAP compositions and vacuum packaging reduced total viable count, Pseudomonas count, and total coliform count than control (p<0.05). TVB-N remained below the recommended limit throughout storage except aerobic packaging (p<0.05). Cooking loss (%) was lowered and showed non-significant results (p>0.05) between vacuum packaging and both MAP concentrations. The meat stored in MAP-2 was characterised by higher (p<0.05) visual scores. Whilst MAP-1 showed higher (p<0.05) L* values and overall acceptability. Sample packaged under aerobic packaging showed significant (p<0.05) results for b* and thiobarbituric acid reactive substances (TBARS). Meat stored in aerobic packaging showed higher (p<0.05) shear force values. The outcome of this trial may help to promote the application of understudy MAP compositions and rapid detection of microbes by biochemical analysis under local conditions.

A Study on Virtual Environment Platform for Autonomous Tower Crane (타워크레인 자율화를 위한 가상환경 플랫폼 개발에 관한 연구)

  • Kim, Myeongjun;Yoon, Inseok;Kim, Namkyoun;Park, Moonseo;Ahn, Changbum;Jung, Minhyuk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.4
    • /
    • pp.3-14
    • /
    • 2022
  • Autonomous equipment requires a large amount of data from various environments. However, it takes a lot of time and cost for an experiment in a real construction sites, which are difficulties in data collection and processing. Therefore, this study aims to develop a virtual environment for autonomous tower cranes technology development and validation. The authors defined automation functions and operation conditions of tower cranes with three performance criteria: operational design domain, object and event detection and response, and minimum functional conditions. Afterward, this study developed a virtual environment for learning and validation for autonomous functions such as recognition, decision making, and control using the Unity game engine. Validation was conducted by construction industry experts with a fidelity which is the representative matrix for virtual environment assessment. Through the virtual environment platform developed in this study, it will be possible to reduce the cost and time for data collection and technology development. Also, it is also expected to contribute to autonomous driving for not only tower cranes but also other construction equipment.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

D4AR - A 4-DIMENSIONAL AUGMENTED REALITY - MODEL FOR AUTOMATION AND VISUALIZATION OF CONSTRUCTION PROGRESS MONITORING

  • Mani Golparvar-Fard;Feniosky Pena-Mora
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.30-31
    • /
    • 2009
  • Early detection of schedule delay in field construction activities is vital to project management. It provides the opportunity to initiate remedial actions and increases the chance of controlling such overruns or minimizing their impacts. This entails project managers to design, implement, and maintain a systematic approach for progress monitoring to promptly identify, process and communicate discrepancies between actual and as-planned performances as early as possible. Despite importance, systematic implementation of progress monitoring is challenging: (1) Current progress monitoring is time-consuming as it needs extensive as-planned and as-built data collection; (2) The excessive amount of work required to be performed may cause human-errors and reduce the quality of manually collected data and since only an approximate visual inspection is usually performed, makes the collected data subjective; (3) Existing methods of progress monitoring are also non-systematic and may also create a time-lag between the time progress is reported and the time progress is actually accomplished; (4) Progress reports are visually complex, and do not reflect spatial aspects of construction; and (5) Current reporting methods increase the time required to describe and explain progress in coordination meetings and in turn could delay the decision making process. In summary, with current methods, it may be not be easy to understand the progress situation clearly and quickly. To overcome such inefficiencies, this research focuses on exploring application of unsorted daily progress photograph logs - available on any construction site - as well as IFC-based 4D models for progress monitoring. Our approach is based on computing, from the images themselves, the photographer's locations and orientations, along with a sparse 3D geometric representation of the as-built scene using daily progress photographs and superimposition of the reconstructed scene over the as-planned 4D model. Within such an environment, progress photographs are registered in the virtual as-planned environment, allowing a large unstructured collection of daily construction images to be interactively explored. In addition, sparse reconstructed scenes superimposed over 4D models allow site images to be geo-registered with the as-planned components and consequently, a location-based image processing technique to be implemented and progress data to be extracted automatically. The result of progress comparison study between as-planned and as-built performances can subsequently be visualized in the D4AR - 4D Augmented Reality - environment using a traffic light metaphor. In such an environment, project participants would be able to: 1) use the 4D as-planned model as a baseline for progress monitoring, compare it to daily construction photographs and study workspace logistics; 2) interactively and remotely explore registered construction photographs in a 3D environment; 3) analyze registered images and quantify as-built progress; 4) measure discrepancies between as-planned and as-built performances; and 5) visually represent progress discrepancies through superimposition of 4D as-planned models over progress photographs, make control decisions and effectively communicate those with project participants. We present our preliminary results on two ongoing construction projects and discuss implementation, perceived benefits and future potential enhancement of this new technology in construction, in all fronts of automatic data collection, processing and communication.

  • PDF

A study on the Revitalization of Traditional Market with Smart Platform (스마트 플랫폼을 이용한 전통시장 활성화 방안 연구)

  • Park, Jung Ho;Choi, EunYoung
    • Journal of Service Research and Studies
    • /
    • v.13 no.1
    • /
    • pp.127-143
    • /
    • 2023
  • Currently, the domestic traditional market has not escaped the swamp of stagnation that began in the early 2000s despite various projects promoted by many related players such as the central government and local governments. In order to overcome the crisis faced by the traditional market, various R&Ds have recently been conducted on how to build a smart traditional market that combines information and communication technologies such as big data analysis, artificial intelligence, and the Internet of Things. This study analyzes various previous studies, users of traditional markets, and application cases of ICT technology in foreign traditional markets since 2012 and proposes a model to build a smart traditional market using ICT technology based on the analysis. The model proposed in this study includes building a traditional market metaverse that can interact with visitors, certifying visits to traditional markets through digital signage with NFC technology, improving accuracy of fire detection functions using IoT and AI technology, developing smartphone apps for market launch information and event notification, and an e-commerce system. If a smart traditional market platform is implemented and operated based on the smart traditional market platform model presented in this study, it will not only draw interest in the traditional market to MZ generation and foreigners, but also contribute to revitalizing the traditional market in the future.

A study on accident prevention AI system based on estimation of bus passengers' intentions (시내버스 승하차 의도분석 기반 사고방지 AI 시스템 연구)

  • Seonghwan Park;Sunoh Byun;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.57-66
    • /
    • 2023
  • In this paper, we present a study on an AI-based system utilizing the CCTV system within city buses to predict the intentions of boarding and alighting passengers, with the aim of preventing accidents. The proposed system employs the YOLOv7 Pose model to detect passengers, while utilizing an LSTM model to predict intentions of tracked passengers. The system can be installed on the bus's CCTV terminals, allowing for real-time visual confirmation of passengers' intentions throughout driving. It also provides alerts to the driver, mitigating potential accidents during passenger transitions. Test results show accuracy rates of 0.81 for analyzing boarding intentions and 0.79 for predicting alighting intentions onboard. To ensure real-time performance, we verified that a minimum of 5 frames per second analysis is achievable in a GPU environment. his algorithm enhance the safety of passenger transitions during bus operations. In the future, with improved hardware specifications and abundant data collection, the system's expansion into various safety-related metrics is promising. This algorithm is anticipated to play a pivotal role in ensuring safety when autonomous driving becomes commercialized. Additionally, its applicability could extend to other modes of public transportation, such as subways and all forms of mass transit, contributing to the overall safety of public transportation systems.

A study on smart inspection technologies and maintenance system for tunnel (터널 스마트 점검기술 및 유지관리 제도 분석에 관한 연구)

  • Jee-Hee Jung;Kang-Hyun Lee;Sangrae Lee;Bumsik Hwang;Nag-Young Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.569-582
    • /
    • 2023
  • In recent years, the service life of major SOC facilities in south korea has exceeded 30 years, and rapid aging is expected within the next 10 years. This has led to a growing recognition of the need for proactive maintenance of these facilities. Consequently, there have been numerous research efforts to introduce smart inspection technologies into maintenance. However, the current system relies primarily on manpower for safety inspections and diagnostics, and on-site surveys rely on visual inspections. Manpower inspections can be time-consuming, and subjective errors may occur during result analysis. In the case of tunnels, there are disadvantages, such as the loss of social overhead capital due to partial closures during inspections. Therefore, institutionalizing smart safety inspections is essential, considering specific measures like using advanced equipment and updating qualifications for experts. Furthermore, it is necessary to verify and validate safety inspection results using advanced equipment before instituting changes. This could be achieved through national-level official research programs and the operation of verification and validation institutions. If smart inspection technology is introduced into maintenance, routine inspections of SOC facilities, such as tunnels, will become feasible. As a result, maintenance technology capable of early detection and proactive response to safety incidents caused by changes in facility conditions is anticipated.

Design Anamorphic Lens Thermal Optical System that Focal Length Ratio is 3:1 (초점거리 비가 3:1인 아나모픽 렌즈 열상 광학계 설계)

  • Kim, Se-Jin;Ko, Jung-Hui;Lim, Hyeon-Seon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.4
    • /
    • pp.409-415
    • /
    • 2011
  • Purpose: To design applied anamorphic lens that focal length ratio is 3:1 optical system to improve detecting distance. Methods: We defined a boundary condition as $50^{\circ}{\sim}60^{\circ}$ for viewing angle, horizontal direction 36mm, vertical direction 12 mm for focal length, f-number 4, $15{\mu}m{\times}15{\mu}m$ for pixel size and limit resolution 25% in 33l p/mm. Si, ZnS and ZnSe as a materials were used and 4.8 ${\mu}m$, 4.2 ${\mu}m$, 3.7 ${\mu}m$ as a wavelength were set. optical performance with detection distance, narcissus and athermalization in designed camera were analyzed. Results: F-number 4, y direction 12 mm and x direction 36 mm for focal length of the thermal optical system were satisfied. Total length of the system was 76 mm so that an overall volume of the system was reduced. Astigmatism and spherical aberration was within ${\pm}$0.10 which was less than 2 pixel size. Distortion was within 10% so there was no matter to use as a thermal optical camera. MTF performance for the system was over 25% from 33l p/mm to full field so it was satisfied with the boundary condition. Designed optical system was able to detect up to 2.9 km and reduce a diffused image by decreasing a narcissus value from all surfaces except the 4th surface. From sensitivity analysis, MTF resolution was increased on changing temperature with the 5th lens which was assumed as compensation. Conclusions: Designed optical system which used anamorphic lens was satisfied with boundary condition. an increasing resolution with temperature, longer detecting distance and decreasing of narcissus were verified.

EARLY DETECTION OF INITIAL DENTAL CARIES USING A $DIFOTI^{TM}$ (Digital Imaging Fiber-Optic Trans-illumination을 이용한 초기 법랑질 우식병소의 조기 진단)

  • Yeom, Hae-Woong;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.4
    • /
    • pp.587-597
    • /
    • 2004
  • Over the past 20 years, great strides have been made in research regarding the mechanisms involved in the progression of carious lesions, but new equipment and research tools need to be developed to continue these advancements in caries research. Various methods have been applied to reduce the incidence of carious lesions, which have led to a significant decrease in the number of occlusal caries, but a concurrent increase in the proportion of proximal carious lesions. New diagnostic equipment has been developed to detect early stage carious lesions, and these have demonstrated excellent laboratory results and show promise in clinical applications. The research presented here examines the efficacy of the newly developed $DIFOTI^{TM}$ system in detecting proximal carious lesions compared to traditional intraoral exam and bitewing radiography, possible problems or deficiencies of using the system in clinic, possible improvements that can be made to the system, and the efficacy of detecting early, reversible carious lesions that can be remineralized by preventative fluoride applications. The subject pool consisted of 23 grammer school age patients just prior to entering the mixed dentition phase. Each patient was given a thorough oral examination, radiographic examination consisting of bitewing radiographs of the posterior teeth, and $DIFOTI^{TM}$ examination of the anterior and posterior teeth. Each examination was carried out two times by two examiners, and the data were statistically analyzed. The results are as follows: 1. The mean alpha value of reliability test of the visual oral examination was as follows; occlusal surface was 0.8470. mesial surface was 0.6430, distal surface was 0.5727. lingual surface was 0.2807 and distal surface was 0.2339. When the examination was limited to posterior teeth, the mean alpha value was as follows; occlusal surface was 0.8577, distal surface was 0.8211, lingual surface was 0.7728, buccal surface was 0.7152 and mesial surface was 0.6782. 2. The alpha value of reliability test of the radiographic analysis of carious lesions of the occlusal, mesial, and distal surfaces was 0.8500. 3. The alpha value of reliability test of the $DIFOTI^{TM}$ diagnostic analysis of carious lesions of the occlusal, buccal, lingual, mesial, and distal surfaces was determined to be 0.7917. 4. The $DIFOTI^{TM}$ diagnostic system was found to be the most accurate means of detecting occlusal, buccal, and lingual surface carious lesions (p<0.05), while mesial and distal proximal carious lesions were most accurately assessed using bitewing radiography (p<0.05).

  • PDF