• Title/Summary/Keyword: Visual cortex

Search Result 135, Processing Time 0.027 seconds

Activation Differences of Superior Parietal Lobule and Cerebellum Areas While Inferring Geometrical Figures per Intellectual Category in Adolescents (도형 과제 수행 때 나타나는 청소년의 지능별 대뇌 및 소뇌의 활성도 차이 분석)

  • Kim, Ye Rim
    • Journal of Gifted/Talented Education
    • /
    • v.23 no.5
    • /
    • pp.637-648
    • /
    • 2013
  • The relationship between the cerebral cortex and human intelligence has been studied using various methods, and related brain areas involved in intellectual manifestation have been discovered individually. Such studies have also shown the cerebellum is closely involved in various cognitive functions such as language, memory, and information processing. However, studies showing an activity difference between the cerebral cortex and cerebellum when performing specific tasks are hard to find. This study searched and analyzed the active regions of the cerebral cortex and cerebellum seen while performing the inference of geometrical figures. A WAIS intelligence test was conducted using 81 healthy boys (16.3 years of age on average), and five categories were classified. While performing the inference of shapes, their brain images were taken using functional magnetic resonance imaging (fMRI). As a result, the activity in 12 brain regions was observed, including in the cerebral cortex, the bilateral inferior parietal, the visual cortex, bilateral superior parietal, frontal-Inf-Tri-R, and bilateral caudate, while activities in 5 discrete areas were seen in the cerebellum. In particular, the higher the intelligence (IQ) of the subject, the stronger their activity. Among those with the most superior intelligence, subjects with an IQ of 140-147 showed significantly higher activity compared to the other groups. Such results seem to represent a very high utilization of intelligence in a highly gifted group, and we can expect to use this to determine the super gifted.

Changes of Regional Cerebral Glucose Metabolism in Normal Aging Process : A Study With EDG PET (정상적인 노화 과정에서 국소뇌포도당대사의 변화: FDG PET 연구)

  • Yoon, Joon-Kee;Kim, Sang-Eun;Lee, Kyung-Han;Choi, Yong;Choe, Yearn-Seong;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.4
    • /
    • pp.231-240
    • /
    • 2001
  • Purpose: Normal aging results in detectable changes in the brain structure and function. We evaluated the changes of regional cerebral glucose metabolism in the normal aging process with FDG PET. Materials and Methods: Brain PET images were obtained in 44 healthy volunteers (age range 20-69 'y'; M:F = 29:15) who had no history of neuropsychiatric disorders. On 6 representative transaxial images, ROIs were drawn in the cortical and subcortical areas. Regional FDG uptake was normalized using whole brain uptake to adjust for the injection dose and correct for nonspecific declines of glucose metabolism affecting all brain areas equally. Results: In the prefrontal, temporoparietal and primary sensorimotor cortex, the normalized FDG uptake (NFU) reached a peak in subjects in their 30s. The NFU in the prefrontal and primary sensorimotor cortex declined with age after 30s at a rate of 3.15%/decade and 1.93%/decade, respectively. However, the NFU in the temporoparietal cortex did not change significantly with age after 30s. The anterior (prefrontal) posterior (temporoparietal) gradient peaked in subjects in their 30s and declined with age thereafter at a rate of 2.35%/decade. The NFU in the caudate nucleus was decreased with age after 20s at a rate of 2.39%/decade. On the primary visual cortex, putamen, and thalamus, the NFU values did not change significantly throughout the ages covered. These patterns were not significantly different between right and left cerebral hemispheres. Of interest was that the NFU in the left cerebellar cortex was increased with age after 20s at a rate of 2.86%/decade. Conclusion: These data demonstrate regional variation of the age-related changes in the cerebral glucose metabolism, with the most prominent age-related decline of metabolism in the prefrontal cortex. The increase in the cerebellar metabolism with age might reflect a process of neuronal plasticity associated with aging.

  • PDF

Effects of the 3D Visual Feedback Exercise with Action Observation on the Posture Alignment and Cerebral Cortex Activation in Forward Head Posture (3D 시각적 피드백과 동작관찰을 이용한 운동이 전방머리자세의 자세 정렬과 대뇌겉질 활성도에 미치는 영향)

  • Kang, Hyojeong;Yang, Hoesong;Kim, Minkyu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.1
    • /
    • pp.113-124
    • /
    • 2020
  • Purpose : The purpose of this study was to investigate the effects of exercise intervention combined with 3D visual feedback and motion observation on postural alignment and cerebral cortical activity in subjects with forward head posture (FHP). Methods : The study included 28 participants with FHP, randomly divided into a 3D visual feedback plus motion observation group (n=14) or control group (n=14). The experimental group received corrective exercise combined with 3D visual feedback and motion observation for FHP, three times a week for four weeks. We examined cervical spine radiographs in the lateral standing position with both arms crossed to measure the craniovertebral angle (CVA) and cervical lordosis (CL). Relative alpha (RA) and beta waves (RB) were measured by wireless dry EEG. Results : The CVA value was significantly different between the groups, and the CL value was significantly different only in the experimental group. RA and RB values were not significantly different before and after intervention in the control group. RB values were significantly decreased before and after intervention in the experimental group. Conclusion : Based on the results of this study, we suggest that interventions combined with motion observation and 3D visual feedback may be effective as exercise methods to improve postural alignment and cerebral activity in subjects with FHP. Further research is required to generalize our results on technical supplementation complemented with 3D visual feedback devices.

Effects of Head Acupuncture Versus Upper and Lower Limbs Acupuncture on Signal Activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex (두침과 상하지 침자극이 뇌와 뇌의 체성감각피질에 미치는 영향에 대한 fMRI Study)

  • Park, Jung-Mi;Gwak, Ja-Young;Cho, Seung-Yeon;Park, Seong-Uk;Jung, Woo-Sang;Moon, Sang-Kwan;Ko, Chang-Nam;Cho, Ki-Ho;Kim, Young-Suk;Bae, Hyung-Sup;Jang, Geon-Ho;Bang, Jae-Seung
    • Journal of Acupuncture Research
    • /
    • v.25 no.5
    • /
    • pp.151-165
    • /
    • 2008
  • Objectives : To evaluate the effects of Head Acupuncture versus Upper and Lower Limbs Acupuncture on signal activation of Blood Oxygen Level Dependent(BOLD) fMRI on the Brain and Somatosensory Cortex. Subjects and Methods : 10 healthy normal right-handed female volunteer were recruited. The average age of the 10 subjects was 30 years old. The BOLD functional MRI(fMRI) signal characteristics were determined during tactile stimulation was conducted by rubbing 4 acu-points in the right upper and lower limbs($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$). After stimulation of Head Acupuncture in Sishencong($HN_1$), $GB_{18}$, $GB_9$, $TH_{20}$ of Left versus Upper and Lower Limbs Acupuncture($LI_1$, $LI_{10}$, $LV_3$, $ST_{36}$ of Right) and took off needles. Then the BOLD fMRI signal characteristics were determined at the same manner. Results : 1. When touched with cotton buds(sensory stimulation), left Parietal Lobe, Post-central Gyrus, primary somatosensory cortex(BA 1, 2, 3), and primary motor cortex(BA 4) were mainly activated. When $ST_{36}$ was stimulated, Frontal Lobe, Parietal Lobe, Cerebellum, and Posterior Lobe as well as Inter-Hemispheric displaying a variety of regions. 2. In signal activation before and after Head Acupuncture reaction, it showed signal activation after removing the acupuncture needle and right Somatosensory Association Cortex, Postcentral Gyrus, and Parietal Lobe were more activated. 3. In reactions of before and after Upper and Lower Limb Acupuncture, it also showed signal activation after removing the acupuncture needle and bilateral Occipital Lobe, Lingual Gyrus, visual association cortex, and Cerebellum were activated. 4. After acupuncture stimulation, In Upper and Lower Limb Acupuncture Group, left frontal Lobe, Precentral Gyrus and Bilateral parietal lobe, Postcentral Gyrus and Primary Somatosensory Cortex(BA 2) were activated. In Head Acupuncture Group, which has most similar activation regions, but especially right Pre-Post central Gyrus, Primary Somatosensory Cortex(BA 3), Primary Motor Cortex, frontal Lobe and Parietal Lobe were activated. Conclusions : When sensory stimulation was done with cotton buds on four acup-points($LI_1$, $LI_{10}4, $LV_3$, $ST_{36}$), while bilaterally activated, contralateral sense was more dominant. It showed consistency with cerebral cortex function. When $ST_{36}$ was stimulated Frontal Lobe, Parietal Lobe, Cerebellum, Posterior Lobe as well as Inter-Hemispheric were stimulated. In Head Acupuncture, it showed more contralateral activation after acupuncture. In Upper and Lower Limb Acupuncture, it showed typically contralateral activation and deactivation of limbic system after acupuncture stimulation. Therefore, there were different fMRI BOLD signal activation reaction before and after Head Acupuncture vs Upper and Lower Limb Acupuncture which might be thought to be caused by acu-points' sensitivity and different sensory receptor to response acupuncture stimulation.

  • PDF

Phasic and Tonic Inhibition are Maintained Respectively by CaMKII and PKA in the Rat Visual Cortex

  • Joo, Kayoung;Yoon, Shin Hee;Rhie, Duck-Joo;Jang, Hyun-Jong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • Phasic and tonic ${\gamma}$-aminobutyric acidA ($GABA_A$) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the $GABA_A$ receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular $Ca^{2+}$ and $Ca^{2+}$/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via $Ca^{2+}$ and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.

Analysis of Brain Activation due to Mouth Shape during Grip Movement (잡기동작 수행 시 입모양에 따른 뇌활성화 분석)

  • Shim, Je-Myung;Kim, Hwan-Hee;Kim, Chung-Sun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.5 no.3
    • /
    • pp.467-476
    • /
    • 2010
  • Purpose : This study was performed to understand the relationship between hand and mouth shapes using functional magnetic resonance imaging(fMRI). Methods : Two healthy volunteers without any previous history of physical or neurological illness were recruited. fMRI was done that volunteers was 6 repeated of natural mouth, close mouth and open mouth while power grip and pinch grip movement. Results : Cerebral cortex activation was not well observed for the natural mouth during the power grip exercise. For the closed mouth, the temporal lobe, Broca's area, the prefrontal area related to thinking and judgment, the supplementary motor area, the auditory area and Wernicke's area were activated. For the open mouth, cortical activation was also observed in the temporal lobe, Wernicke's area, the prefrontal area related to thinking and the orbital frontal area related to visual sense. During the pinch grip exercise, cortical activation was observed for the natural mouth in the primary sensory area, Wernicke's area, the primary and supplementary motor area, and the prefrontal area. For the closed mouth, cortical activation was observed in the temporal lobe, Wernicke's area, the prefrontal area related to thinking, the secondary visual area, the primary sensory area and the supplementary motor area. In the case of the open mouth, cortical activation was observed in a few parts in the temporal lobe as well as Wernicke's area, the prefrontal area related to thinking, and other areas related to visual sense such as the primary visual area, the secondary visual area and the visual association area. Conclusion : Brain was more activation for close mouth and open mouth more than natural mouth movement.

The Influence of MR Gradient Acoustic Noise on fMRI (MR 경사 자계 소음이 뇌기능 영상에 미치는 영향)

  • S. C. Chung
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.50-57
    • /
    • 1998
  • MR acoustic sound or noise due to gradient pulsings has been one of the problems in MRI, both in patient scanning as well as in many areas of psychiatric and neuroscience research, such as brain fMRI. Especially in brain fMRI, sound noise is one of the serious noise sources which obscures the small signals obtainable from the subtle changes occurring in oxygenation status in the cortex and blood capillaries. Therfore, we have studied the effects of acoustic or sound noise arising in fMR imaging of the auditory, motor and visual cortices. The results show that the acoustical noise effects on motor and visual responses are opposite. That is, for the motor activity, it shows an increased total motor activation while for the visual stimulation, corresponding(visual) cortical activity has diminished substantially when the subject is exposed to a loud acoustic sound. Although the current observations are preliminary and require more experimental confirmation, it appears that the observed acoustic-noise effects on brain functions, such as in the motor and visual cortices, are new observations and could have significant consequences in data observation and interpretation in future fMRI studies.

  • PDF

Investigation of Visual Perception Under Zen-Meditation Based On Alpha-Dependent F-VEPs

  • Liao, Hsien-Cheng;Liu, Chuan-Yi;Lo, Pei-Chen
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.384-391
    • /
    • 2006
  • Variation of brain dynamics under Zen meditation has been one of our major research interests for years. One issue encountered is the inaccessibility to the actual meditation level or stage as a reference. In this paper, we propose an alternative strategy for investigating the human brain in response to external flash stimuli during Zen meditation course. To secure a consistent condition of the brain dynamics when applying stimulation, we designed a recording of flash visual evoked potentials (F-VEPs) based on a constant background EEG (electroencephalograph) frontal $\alpha-rhythm$ dominating activities that increase significantly during Zen meditation. Thus the flash-light stimulus was to be applied upon emergence of the frontal $\alpha-rhythm$. The alpha-dependent F-VEPs were then employed to inspect the effect of Zen meditation on brain dynamics. Based on the experimental protocol proposed, considerable differences between experimental and control groups were obtained. Our results showed that amplitudes of P1-N2 and N2-P2 on Cz and Fz increased significantly during meditation, contrary to the F-VEPs of control group at rest. We thus suggest that Zen meditation results in acute response on primary visual cortex and the associated parts.

Anatomical and Functional Comparison of the Caudate Tail in Primates and the Tail of the Striatum in Rodents: Implications for Sensory Information Processing and Habitual Behavior

  • Keonwoo Lee;Shin-young An;Jun Park;Seoyeon Lee;Hyoung F. Kim
    • Molecules and Cells
    • /
    • v.46 no.8
    • /
    • pp.461-469
    • /
    • 2023
  • The tail of the striatum (TS) is located at the caudal end in the striatum. Recent studies have advanced our knowledge of the anatomy and function of the TS but also raised questions about the differences between rodent and primate TS. In this review, we compare the anatomy and function of the TS in rodent and primate brains. The primate TS is expanded more caudally during brain development in comparison with the rodent TS. Additionally, five sensory inputs from the cortex and thalamus converge in the rodent TS, but this convergence is not observed in the primate TS. The primate TS, including the caudate tail and putamen tail, primarily receives inputs from the visual areas, implying a specialized function in processing visual inputs for action generation. This anatomical difference leads to further discussion of cellular circuit models to comprehend how the primate brain processes a wider range of complex visual stimuli to produce habitual behavior as compared with the rodent brain. Examining these differences and considering possible neural models may provide better understanding of the anatomy and function of the primate TS.

Triple Tibial Osteotomy (TTO) for Treatment of Cranial Cruciate Ligament Rupture in Small Breed Dogs

  • Kim, Tae-Hwan;Hong, Subin;Moon, Heesup;Shin, Jeong-In;Jang, Yun-Sul;Choi, Hyeonjong;Kim, In-Geun;Lee, Jae-hoon
    • Journal of Veterinary Clinics
    • /
    • v.34 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Twelve dogs weighing less than 10 kg underwent unilateral TTO to stabilize the stifle joint with cranial cruciate ligament rupture. Surgical findings, intra-operative and post-operative complications were recorded. Radiographic examinations were performed for 8 weeks following surgery. Postoperative outcome was evaluated using a visual analogue lameness scoring system. Mean preoperative PTA (the angle created by the intersection of the tibial plateau extrapolation line and the patellar tendon) was 103.8 degrees. Mean tibial wedge angle was 16.6 degrees. Mean postoperative PTA was 92.1 degrees. Intraoperatively, fracture through the caudal tibial cortex occurred in all dogs, through the distal tibial crest cortex in 2 dogs, through the lateral tibial cortex in 2 dogs and through the fibula in 1 dog. Four-week postoperative radiographs demonstrated evidence of progressive bone union at osteotomy site and complete unions were identified at 8 week in 10 dogs. All dogs were healed in 11 weeks. Most of dogs revealed weak lameness in 4 weeks and normal ambulation in 8 weeks postoperatively except for only one dog returned in 11 weeks. Despite frequent minor complication, it appears that the TTO is an alternative procedure for management of cranial cruciate ligament rupture in small breed dogs.