• Title/Summary/Keyword: Visual cortex

Search Result 134, Processing Time 0.03 seconds

Visible Distortion Predictors Based on Visual Attention in Color Images

  • Cho, Sang-Gyu;Hwang, Jae-Jeong;Kwak, Nae-Joung
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.300-306
    • /
    • 2012
  • An image attention model and its application to image quality assessment are discussed in this paper. The attention model is based on rarity quantification, which is related to self-information to attract the attention in an image. It is relatively simpler than the others but results in taking more consideration of global contrasts between a pixel and the whole image. The visual attention model is used to develop a local distortion predictor, named color visual differences predictor (CVDP), in color images in order to effectively detect luminance and color distortions.

Evoked Potentials before the Intractable Epilepsy Surgery (난치성 뇌전증 환자에서 수술 전 유발전위검사)

  • Lim, Sung Hyuk;Park, Sang Ku;Baek, Jae Seung;Kim, Kab Kyu;Kim, Ki Eob;Lee, Yu Ji
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.198-204
    • /
    • 2019
  • Various treatments can be attempted in patients with intractable epilepsy, in whom the symptoms of seizures are not controlled by various drugs. On the other hand, in patients requiring a surgical method, a preoperative examination is needed to determine the portion of seizure site to be resected. Electrodes are inserted into the cerebral cortex for accurate lesion measurements and safe operation. The electrodes inserted in the cortex not only record the electroencephalography (EEG), but also allow various tests to confirm the function of the part. One of these methods is the evoked potential test. From January 2015 to December 2018, the trends of measured waveforms in were analyzed 70 patients. The somatosensory evoked potential (SSEP) recorded on the electrode inserted in the cerebral cortex can be searched for the pathway of the central sulcus to avoid the primary motor area and primary sensory area. In addition, using the middle latency auditory evoked potentials (MLAEP) and flash visual evoked potentials (FVEP), the functional cortex in the auditory cortex and the visual cortex were compared with the seizure focus point on the EEG to help determine the location of the ablation and minimize functional impairment after surgery.

Effect of Joksamni combination on NADPH-diaphorase, neuronal Nitric Oxide Synthase, Neuropeptide Y and Vasoactive Intestinal Peptide in the cerebral cortex of Spontaneously Hypertensive Rat (족삼리(足三里) 배혈(配穴)에 따른 전침(電鍼)이 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase와 nNOS, NPY, VIP 신경세포(神經細胞)에 미치는 영향(影響))

  • Jung, In-gy;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.118-132
    • /
    • 2003
  • Objective: The aim of this study was to investigate the effects of Joksamni(ST36) combination on NAD PH-diaphorase, neuronal nitric oxide synthase(nNOS), neuropeptide Y(NPY) and vasoactive intestinal peptide (VIP) in the cerebral cortex of spontaneously hypertensive rat. Methods: The experimental groups were divided into four groups: Normal, Joksamni(ST36), Joksamni(ST36)+Eumneungcheon(SP9), and Joksamni(ST36)+Gokji(LI11). Needles were inserted into acupoints at the depth of 0.5cm with basic insertion method. Electroacupuncture was done under the condition of 2Hz electrical biphasic pulses with continuous rectangular wave lasting for 0.2ms until the muscles produced visible contractions. Such stimulation was applied continuously for 10 minutes, 1 time every 2 days for 10 sessions of treatments. Thereafter we evaluated changes in NADPH-d positive neurons histochemically and changes in nNOS, NPY and VIP positive neurons immunohistochemically. Results: The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in primary somatosensory cortex, visual cortex, auditory cortex, perirhinal cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group with the exception of primary somatosensory cortex. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in auditory cortex, perirhinal cortex, insular cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. The optical densities of NPY positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in primary motor cortex, primary somatosensory cortex, cingulate cortex as compared to the Joksamni (ST36) and Joksamni(ST36)+Eumneungcheon(SP9) groups. The optical densities of VIP positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group were significantly increased in all areas of cerebral cortex except for cingulate cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in auditory cortex, cingulate cortex, perirhinal cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. Conclusions: The result demonstrated that electroacupuncture on Joksamni(ST36) and its combination change the activities of the NO system and peptidergic system in the cerebral cortex of SHR and that acupoint combination is one of the important parameters for the effects.

  • PDF

Adaptive V1-MT model for motion perception

  • Li, Shuai;Fan, Xiaoguang;Xu, Yuelei;Huang, Jinke
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.371-384
    • /
    • 2019
  • Motion perception has been tremendously improved in neuroscience and computer vision. The baseline motion perception model is mediated by the dorsal visual pathway involving the cortex areas the primary visual cortex (V1) and the middle temporal (V5 or MT) visual area. However, few works have been done on the extension of neural models to improve the efficacy and robustness of motion perception of real sequences. To overcome shortcomings in situations, such as varying illumination and large displacement, an adaptive V1-MT motion perception (Ad-V1MTMP) algorithm enriched to deal with real sequences is proposed and analyzed. First, the total variation semi-norm model based on Gabor functions (TV-Gabor) for structure-texture decomposition is performed to manage the illumination and color changes. And then, we study the impact of image local context, which is processed in extra-striate visual areas II (V2), on spatial motion integration by MT neurons, and propose a V1-V2 method to extract the image contrast information at a given location. Furthermore, we take feedback inputs from V2 into account during the polling stage. To use the algorithm on natural scenes, finally, multi-scale approach has been used to handle the frequency range, and adaptive pyramidal decomposition and decomposed spatio-temporal filters have been used to diminish computational cost. Theoretical analysis and experimental results suggest the new Ad-V1MTMP algorithm which mimics human primary motion pathway has universal, effective and robust performance.

The Influence of Eye Movement for Acquiring BOLD Signal in V1 : A Study of Simultaneous Measurement of EOG and fMRI

  • Chung, Jun-Young;Yoon, Hyo-Woon;Kim, Young-Bo;Park, Hyun-Wook
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.4
    • /
    • pp.477-483
    • /
    • 2007
  • We have measured EOG and fMRI simultaneously to investigate whether eye movement (blinking mechanism) might influence functional magnetic resonance imaging (fMRI) signal response in the primary visual cortex. $T2^*-weighted$ Echo-Planar Imaging (EPI) with concurrent electrooculogram (EOG) was acquired in four subjects while they viewed a fixation point and a checkerboard with a flickering rate of 8Hz. With the help of EOG information we divided the experimental blocks into two different conditions: fixation and moving eye. We have compared the fMRI data of these two conditions. Our results have shown that there is no difference between these two conditions. This might suggest that eye blinking does not affect BOLD signal changes in the primary visual cortex. This means further that eye blinking can be ignored in data processing.

Correlation of the Neuropsychological Screening Battery (NSB) and Neuroanatomy for the Parkinson's Disease with Mild Cognitive Impairment by Using the Analysis of Cerebral Cortex Thickness in the Brain MRI (뇌 자기공명영상에서 대뇌 피질 두께 분석법을 이용한 파킨슨병의 경도인지장애 신경심리검사와 신경해부학적 상관관계)

  • Lee, Hyeonyong;Park, Hyonghu;Lee, Jaeseung;Im, Inchul
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.163-170
    • /
    • 2014
  • This study is to investigate neuro-anatomical correlation between neuropsychological results and cerebral cortex thickness of cognitive ability in the brain MRI targeting the patients with mild cognitive impairment. It was that 78 people who were diagnosed as first Parkinson's disease followed by neuropsychological screening battery(Parkinson's disease with mild cognitive impairment: 39 people; Parkinson's disease with normal cognition: 39 people) and 32 people of normal group were selected. Correlation between mild cognitive impairment and normal cognitive impairment and correlation between neuropsychological screening battery and cerebral cortex thickness in the brain MRI were performed by independent sample t-test or Pearson correlation coefficient and then level of significance of collected data was verified in p<0.05. As a result, cerebral cortex thickness of the Parkinson's disease with mild cognitive impairment in both side precuneas and right inferiortemporal lobe had statistically significant decrease. In addition, function of visuospatial ability, verbal and visual memory was reduced in neuropsychological screening battery for cognitive assessment. Especially, there was correlation between neuropsychological screening battery of verbal and visual memory anatomical left precuneus.

Effects of Acupuncture and Electroacupuncture on the Doublecortin, PSA-NCAM and pCREB Expression in the Brain of Spontaneously Hypertensive Rats (침(鍼) 및 전침(電鍼)이 SHR 대뇌(大腦)에서 Doublecortin, PSA-NCAM, pCREB 양성 신경세포에 미치는 영향)

  • Park, Jung-hwan;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.21 no.3
    • /
    • pp.61-81
    • /
    • 2004
  • Background and Objective : The aim of this study was to investigate the effects of acupuncture and electroacupuncture on the DCX, PSA-NCAM, and pCREB expression in the brain of spontaneously hypertensive rats(SHR). Materials and Methods : SHR were divided into five groups: control group, acupuncture group, 2Hz electroacupuncture(EA) group and 100Hz EA group. We evaluated the changes of the DCX, PSA-NCAM, and pCREB positive cells using immunohistochemical method. In the olfactory bulb, we investigate the optical densities of the immunoactive cells. In the dentate gyrus and the piriform cortex, we count the immunoactive cells under the $100{\times}$ visual field optical microscope. Results : 1. The optical densities of DCX-positive cells in the subependymal zone were significantly decreased in all groups, compared to the control group. 2. The counts of DCX-positive cells in the dentate gyrus were significantly increased in all groups, compared to the control group. The counts of DCX-positive cells in the piriform cortex were significantly increased in the acupuncture and 100Hz EA group, compared to the control group. 3. The optical densities of PSA-NCAM-positive cells in the subependymal zone were significantly decreased in the acupuncture and 2Hz EA group, compared to the control group. 4. The counts of PSA-NCAM-positive cells in the dentate gyrus and the piriform cortex were significantly increased in all group, compared to the control group. 5. The counts of pCREB-positive cells in the dentate gyrus were significantly increased in all groups, compared to the control group. The counts of pCREB-positive cells in the piriform cortex were significantly increased in the acupuncture and 100Hz EA group, compared to the control group. Conclusion : We conclude that acupuncture and EA may affect neuronal cell proliferation, differentiation and plasticity in the brain.

  • PDF

A Double-Blind, Sham-Controlled, Pilot Study to Assess the Effects of the Concomitant Use of Transcranial Direct Current Stimulation with the Computer Assisted Cognitive Rehabilitation to the Prefrontal Cortex on Cognitive Functions in Patients with Stroke

  • Park, See-Hyun;Koh, Eun-Jeong;Choi, Ha-Young;Ko, Myoung-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.54 no.6
    • /
    • pp.484-488
    • /
    • 2013
  • Objective : To examine the synergistic effects of both computer-assisted cognitive rehabilitation (CACR) and transcranial direct current stimulation (tDCS) on cognitive function in patients with stroke. Methods : The current double-blind, sham-controlled study enrolled a total of 11 patients who were newly diagnosed with stroke. The patients of the tDCS group (n=6) completed sessions of the Korean computer-assisted cognitive rehabilitation program five times a week for 30 minutes a session during a mean period of 18.5 days concomitantly with the anodal tDCS over the bilateral prefrontal cortex combined with the CACR. The patients of the control group (n=5) also completed sessions of the sham stimulation during a mean period of 17.8 days. Anodal tDCS over bilateral prefrontal cortex (F3 and F4 in 10-20 EEG system) was delivered for 30 minutes at an intensity of 2 mA. Cathode electrodes were applied to the non-dominant arm. All the patients were evaluated using the Seoul Computerized Neuropsychological Test (SCNT) and the Korean Mini-Mental State Examination. Results : Mann-Whitney U test revealed a significant difference between the two groups. The patients of the tDCS group achieved a significant improvement in the post/pre ratio of auditory continuous performance test and visual continuous performance test on the SCNT items. Conclusion : Our results indicate that the concomitant use of the tDCS with CACR to the prefrontal cortex may provide additional beneficial effects in improving the cognitive dysfunction for patients with stroke.

Functional MRI of Visual Cortex: Correlation between Photic Stimulator Size and Cortex Activation (시각피질의 기능적 MR 연구: 광자극 크기와 피질 활성화와의 관계)

  • 김경숙;이호규;최충곤;서대철
    • Investigative Magnetic Resonance Imaging
    • /
    • v.1 no.1
    • /
    • pp.114-118
    • /
    • 1997
  • Purpose: Functional MR imaging is the method of demonstrating changes in regional cerebral blood flow produced by sensory, motor, and any other tasks. Functional MR of visual cortex is performed as a patient stares a photic stimulation, so adaptable photic stimulation is necessary. The purpose of this study is to evaluate whether the size of photic stimulator can affect the degree of visual cortex activation. Materials and Methods: Functional MR imaging was performed in 5 volunteers with normal visual acuity. Photic stimulator was made by 39 light-emitting diodes on a plate, operating at 8Hz. The sizes of photic stimulator were full field, half field and focal central field. The MR imager was Siemens 1.5-T Magnetom Vision system, using standard head coil. Functional MRI utilized EPI sequence (TR/TE= 1.0/51. Omsec, matrix $No.=98{\times}128$, slice thickness=8mm) with 3sets of 6 imaging during stimulation and 6 imaging during rest, all 36 scannings were obtained. Activation images were obtained using postprocessing software(statistical analysis by Z-score), and these images were combined with T-1 weighted anatomical images. The activated signals were quantified by numbering the activated pixels, and activation a index was obtained by dividing the pixel number of each stimulator size with the sum of the pixel number of 3 study using 3 kinds of stimulators. The correlation between the activation index and the stimulator size was analysed. Results: Mean increase of signal intensities on the activation area using full field photic stimulator was about 9.6%. The activation index was greatest on full field, second on half field and smallest on focal central field in 4. The index of half field was greater than that of full field in 1. The ranges of activation index were full field 43-73%(mean 55%), half field 22-40 %(mean 32%), and focal central field 5-24%(mean 13%). Conclusion: The degree of visual cortex activation increases with the size of photic stimulator.

  • PDF

The Effect of Visual Feedback on Postural Control During Sit-to-Stand Movements of Brain-Damaged Patients Under Different Support Conditions (지지조건에 따른 시각되먹임이 뇌손상환자의 일어서기 과정 동안 자세조절에 미치는 영향)

  • Shin, Jun-Beom;Lee, Jae-Sik
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.40-50
    • /
    • 2012
  • The purpose of this study was to investigate the effect of visual feedback on the postural control of stroke patients, by systematically varying conditions of visual feedback [eye-open condition (EO) vs. eye-closed condition (EC)], and base-support (both-side support, affected-side support, and unaffected-side support). In this study, we allocated 41 stroke patients with no damage in the cerebellum and visual cortex who can walk at least 10 meters independently, and 35 normal adults who have no experience of stroke to the control group. Both groups were asked to perform a "sit-to-stand" task three to five times, and their postural control ability was measured and compared in terms of asymmetric dependence (AD) instead of the traditional symmetric index (SI) in the literature. The results showed that although both subject groups maintained better postural control in the EO condition than in the EC condition, the patient group appeared to be more stable in EC than in EO when they were required to perform the task of the support condition given on the affected side. These results implied that visual feedback can impair stroke patients' postural control when it is combined with a specific support condition.