• Title/Summary/Keyword: Visual cortex

Search Result 135, Processing Time 0.027 seconds

Effect of EEG Wave Type on Visual Cortex of Visual Target according to Position of Fixation Point (주시점의 위치에 따른 시 표적이 시피질의 뇌파에 미치는 영향)

  • Kim, Douk-Hoon;Cho, Jin-Wook;Nam, Sang-He
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.101-105
    • /
    • 2000
  • This study was to investigate the effect of EEG wave type on visual cortex of visual target according to position of fixation point on the Korean. Visual evoked potential system used the BIO-Pag and recorded to 586 computer. The illumination was 500 lux and the visual target was red light dot of 3 cm size. The results of the convergence and divergence as follows: The visual stimulation waves on the visual cortex have about 70% of delta wave, about 10% of beta wave, about 9% of theta wave and about 7% of alpha wave respectively. The convergence state was much more appeared the fast wave on the comparative of the divergence. Therefore, the convergence state was much more producted the beta and alpha wave on the comparative of the divergence. On the other hand, on the convergence and divergence, the histogram amplitude of EEG wave appeared almost the non-Gaussian shape. According to the phase analysis of amplitude of EEG wave almost all type was linear shape.

  • PDF

Complex Features by Independent Component Analysis (독립성분분석에 의한 복합특징 형성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2003.05a
    • /
    • pp.351-355
    • /
    • 2003
  • Neurons in the mammalian visual cortex can be classified into the two main categories of simple cells and complex cells based on their response properties. Here, we find the complex features corresponding to the response of complex cells by applying the unsupervised independent component analysis network to input images. This result will be helpful to elucidate the information processing mechanism of neurons in primary visual cortex.

  • PDF

Retinotopy of human visual cortex; A Study with 3T fMRI

  • 윤효운;정관진;임동미;조은미;송명성;연은경;박현욱
    • Proceedings of the KSMRM Conference
    • /
    • 2002.11a
    • /
    • pp.109-109
    • /
    • 2002
  • Purpose: The aim of the study is to see the representation patterns of human visual cortex by perceiving some geometrical shapes. Method: 3 humans as subjects for the fMRI experiment. A classical block or box car design was used as experimental paradigm. 3 different types of fan shapes and concentric circles were presented.

  • PDF

Image Data Configuration and Recognition based on Visual Cortex (시각피질의 특성에 의한 영상 데이터 구성과 인식)

  • Cho, Jae-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.229-230
    • /
    • 2020
  • 컴퓨터 하드웨어, 소프트웨어의 급속한 발전에도 불구하고 인간의 정보처리능력에 뒤지는 경우도 있다. 이와 같이 인간의 정보처리체계가 어떻게 이런 문제를 해결할 수 있는지에 대한 연구가 활발히 진행 중이다. 본 논문에서는 인간의 시각 정보 처리의 특성에 의한 인지 정보 처리 모델링을 기반으로 학습 가능성을 보이고 일반적인 영상 인식 모델과의 차이를 비교 분석하고자 한다.

  • PDF

Motion Detection Model Based on PCNN

  • Yoshida, Minoru;Tanaka, Masaru;Kurita, Takio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.273-276
    • /
    • 2002
  • Pulse-Coupled Neural Network (PCNN), which can explain the synchronous burst of neurons in a cat visual cortex, is a fundamental model for the biomimetic vision. The PCNN is a kind of pulse coded neural network models. In order to get deep understanding of the visual information Processing, it is important to simulate the visual system through such biologically plausible neural network model. In this paper, we construct the motion detection model based on the PCNN with the receptive field models of neurons in the lateral geniculate nucleus and the primary visual cortex. Then it is shown that this motion detection model can detect the movements and the direction of motion effectively.

  • PDF

Functional Mapping of the Human Visual Cortex Using Electrical Cortical Stimulation and Flash Visual Evoked Potentials (전기극 뇌자극과 광시각 유발전위 검사를 통한 인간의 시각 피질에서의 기능적 분화 양상)

  • Lee, Hyang Woon;Hong, Seung Bong;Seo, Dae Won;Tae, Woo Suk;Hong, Seung Chyul
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.1
    • /
    • pp.10-18
    • /
    • 1999
  • 연구배경 및 목적 : 시각 인지 과정은 영장류 실험을 통하여 다소 정보를 얻을 수 있었으나 인간에서는 아직 완전하게 이해되지 않고 있다. 이 연구의 목적은 뇌자극과 시가유발전위 검사를 토대로 인간의 시각피질의 기능적 분화와 시간 순으로 활성화되는 양상을 보고자 한 것이다. 연구방법 : 간질 수술을 위하여 후두엽과 인접 부위에 광범위하게 피질하전극을 넣은 22명의 환자를 대상으로 전기적 뇌자극과 시각유발전위 검사를 시행하였다. 뇌자극시 나타나는 반응은 형태, 색, 및 움직임의 세 가지로 크게 나누고 형태는 다시 단순, 중간 및 복잡한 형태로 세분하였다. 시각유발전위는 P1 혹은 IV파의 latency를 측정하였다. 결과 : 단순 혹은 중간 형태는 흔히 occipital pole과 striate cortex에서 발생하였다. 색반응은 후두엽의 기저부 즉, fusiform, lingual, inferior occipital gyri를 자극할 때 관찰되었다. 움직임 반응은 내측기저부 및 외측의 측후두엽 혹은 측두정후두부의 경계부에서 주로 나타났다. 결론 : 이러한 결과는 인간의 시각피질이 시각의 여러 가지 구성성분 즉, 형태, 색, 및 움직임에 대해서 각각 별도로 분화되어 있다는 것을 보여준다. 도한 시각자극이 전해지면 striate cortex와 occipital pole이 가장 먼저 활성화되고 이어서 내측 및 외측 후두엽 부위가 활성화된다는 것을 알 수 있다. 이러한 사실을 종합하여 보면 인간의 시각피질은 시각의 여러 구성성분별로 별도로 발달된 해부학적 경로를 통하여 각각의 기능에 대하여 특수하게 분화된 뇌세포에서 시각정보를 각각 분석하되 일정한 시간순서에 의한다는 것을 시사하는 것이다.

  • PDF

Electrophysiological and Morphological Classification of Inhibitory Interneurons in Layer II/III of the Rat Visual Cortex

  • Rhie, Duck-Joo;Kang, Ho-Young;Ryu, Gyeong-Ryul;Kim, Myung-Jun;Yoon, Shin-Hee;Hahn, Sang-June;Min, Do-Sik;Jo, Yang-Hyeok;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.317-323
    • /
    • 2003
  • Interneuron diversity is one of the key factors to hinder understanding the mechanism of cortical neural network functions even with their important roles. We characterized inhibitory interneurons in layer II/III of the rat primary visual cortex, using patch-clamp recording and confocal reconstruction, and classified inhibitory interneurons into fast spiking (FS), late spiking (LS), burst spiking (BS), and regular spiking non-pyramidal (RSNP) neurons according to their electrophysiological characteristics. Global parameters to identify inhibitory interneurons were resting membrane potential (>-70 mV) and action potential (AP) width (<0.9 msec at half amplitude). FS could be differentiated from LS, based on smaller amplitude of the AP (<∼50 mV) and shorter peak-to-trough time (P-T time) of the afterhyperpolarization (<4 msec). In addition to the shorter AP width, RSNP had the higher input resistance (>200 $M{Omega}$) and the shorter P-T time (<20 msec) than those of regular spiking pyramidal neurons. Confocal reconstruction of recorded cells revealed characteristic morphology of each subtype of inhibitory interneurons. Thus, our results provide at least four subtypes of inhibitory interneurons in layer II/III of the rat primary visual cortex and a classification scheme of inhibitory interneurons.

Seed-Based Resting-State Functional MRI for Presurgical Localization of the Motor Cortex: A Task-Based Functional MRI-Determined Seed Versus an Anatomy-Determined Seed

  • Ji Young Lee;Yangsean Choi;Kook Jin Ahn;Yoonho Nam;Jin Hee Jang;Hyun Seok Choi;So Lyung Jung;Bum Soo Kim
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.171-179
    • /
    • 2019
  • Objective: For localization of the motor cortex, seed-based resting-state functional MRI (rsfMRI) uses the contralateral motor cortex as a seed. However, research has shown that the location of the motor cortex could differ according to anatomical variations. The purpose of this study was to compare the results of rsfMRI using two seeds: a template seed (the anatomically expected location of the contralateral motor cortex) and a functional seed (the actual location of the contralateral motor cortex determined by task-based functional MRI [tbfMRI]). Materials and Methods: Eight patients (4 with glioma, 3 with meningioma, and 1 with arteriovenous malformation) and 9 healthy volunteers participated. For the patients, tbfMRI was performed unilaterally to activate the healthy contralateral motor cortex. The affected ipsilateral motor cortices were mapped with rsfMRI using seed-based and independent component analysis (ICA). In the healthy volunteer group, both motor cortices were mapped with both-hands tbfMRI and rsfMRI. We compared the results between template and functional seeds, and between the seed-based analysis and ICA with visual and quantitative analysis. Results: For the visual analysis, the functional seed showed significantly higher scores compared to the template seed in both the patients (p = 0.002) and healthy volunteers (p < 0.001). Although no significant difference was observed between the functional seed and ICA, the ICA results showed significantly higher scores than the template seed in both the patients (p = 0.01) and healthy volunteers (p = 0.005). In the quantitative analysis, the functional seed exhibited greater similarity to tbfMRI than the template seed and ICA. Conclusion: Using the contralateral motor cortex determined by tbfMRI as a seed could enhance visual delineation of the motor cortex in seed-based rsfMRI.

Immediate Effect on Mu-rhythm of Somatosensory Cortex using Visual Feedback Training in Healthy Adults (건강한 성인에서 시각적 되먹임 훈련이 감각운동겉질의 뮤-리듬에 미치는 즉각적인 효과 )

  • Su-Bok Kim;On-Seok Lee
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.3
    • /
    • pp.47-53
    • /
    • 2023
  • PURPOSE: A visual feedback method was proposed to induce brain stimulation in a stroke patient, and among them, there was a treatment using a mirror. On the other hand, mirror therapy focuses only on the functional changes in body movements, and analysis of neurophysiological mechanisms of brain activity is lacking. In addition, studies on evaluating the activity and response generated in specific brain regions during visual feedback training using mirrors are insufficient. METHODS: Fifteen healthy adults (male: 10, female: 5, Years: 23.33 ± 1.23), who were right-handed were recruited. By attaching the C3, Cz, and C4 channels in the sensorimotor cortex using an electroencephalogram, training was performed under the conditions without mirror-based visual feedback (No-condition) and with visual feedback (Tasks-condition). At this time, the immediate activity of the mu-rhythm in response to training was separated and evaluated. RESULTS: The tasks-condition of C3, Cz, and C4 channels activated the relative mu-rhythm rather than the no-condition, and all showed significant differences (p < .05). In addition, in all channels at the start time, the tasks-condition was more active than the no-condition (p < .05). The activity of the cortical response was higher in the tasks-condition than in the no-condition (p < .05). CONCLUSION: The mu-rhythm activity can be evaluated objectively when visual feedback using a mirror is applied to healthy subjects, and a basic analysis protocol is proposed.

NMR Functional brain Imaging with the Tailored RF Pulse (TAILORED RF PULSE를 이용한 NMR에서의 뇌 기능 영상법)

  • Ro, Y.M.;Cho, Z.H.;Mennon, R.S.;Ugurbil, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.21-24
    • /
    • 1993
  • The experimental results of visual stimulation with the tailored RF pulse are reported. Tailored RF pulse is used for the susceptibility effect imaging. Around 25% signal change of visual cortex area is detected during photic stimulation. Interestingly, with the tailored RF pulse, the signal intensity of visual cortex is deceased during photic stimulation. It is, however, increased with normal $T_2$ weighted imaging. The comparison between normal $T_2$ weighted imaging and the tailored RF pulse imaging are performed with 4T NMR system and the results with human volunteer are also presented.

  • PDF