• Title/Summary/Keyword: Visual cortex

Search Result 135, Processing Time 0.021 seconds

The Change of Cortical Activity Induced by Visual Disgust Stimulus (시각혐오자극으로 유발된 대뇌 피질 활성도 변화)

  • Jung, Wook;Park, Doo-Heum;Yu, Jae-Hak;Ryu, Seung-Ho;Ha, Ji-Hyeon;Shin, Byoung-Hak
    • Sleep Medicine and Psychophysiology
    • /
    • v.20 no.2
    • /
    • pp.75-81
    • /
    • 2013
  • Objectives: There are a lot of studies that analyze the interaction between the emotion of disgust and the functional brain images using fMRI and PET. But studies using sLORETA (standardized low resolution brain electromagnetic tomography) almost do not exist. The aim of this research is to explore the relationship of the emotion of disgust and the cortical activation using sLORETA analysis. Methods: Forty five healthy young adults ($27.1{\pm}2.6$ years) participated in the study. While they were watching 4 neutral images and 4 disgusting images associated with mutilation selected from the international affective picture system (IAPS), participants' EEGs were taken for 30 seconds per one picture. Through these obtained EEG data, sLORETA analysis was performed to compare EEGs associated with neutral and negative images. Results: During looking for visual disgusting stimulus, all participants reported unpleasantness, arousal and stress. In sLORETA analysis, the decrease of current density in theta wave was shown at left frontal superior gyrus (BA10) and middle gyrus (BA10, 11). This voxel cluster consists of a total of 11 voxels and the threshold of t value indicating statistically significant decreases in the current density (p<0.05) was -1.984. There were no differences between male and female in the degree of being disgusted by the stimuli. Conclusion: This finding may suggest that the activation of dorsolateral prefrontal cortex might be associated with regulating disgust emotion.

The Physiological Responses and Behavior Characteristics of Sensory Stimulation of ADHD Children: A Systematic Review (ADHD아동의 감각자극에 대한 생리학적 반응 특성과 행동학적 특성: 체계적 고찰)

  • Lee, Na-Hael;Kim, Kyeong-Mi
    • The Journal of Korean Academy of Sensory Integration
    • /
    • v.9 no.2
    • /
    • pp.51-60
    • /
    • 2011
  • Objective : The characteristics of physiological responses of ADHD children to sensory stimulation were examined by types of sensory stimulation, measurement tools, and responses. In addition the behavioral characteristics were examined by analyzing items of common problems according to the measuring tool, frequency, and measurement tools. Methods : A systematic review methods were used. Papers published in the Journal between January, 1990 and December 31, 2011 were searched through Riss4U, MEDLINE /PubMed, CINAH. The main terms searched were "ADHD, Children, Sensory processing, Sensory integration, SP, SSP, SOR, TIE, CSP, SEP, EDR", and 15 papers were analyzed. Results : 1. The number of studies on physiological responses of children with ADHD to sensory stimulation was five (33.33 percent), the number of studies on behavioral responses was ten(66.67%), and the number of studies combined the two kinds of study was two (13.33%), where a total of 15 (100%) papers were analyzed. 2. In five studies on the physiological response, there were three studies using tactile and proprioceptive stimulations and two studies using olfactory, auditory, visual, tactile, and vestibular sensories. 3. In ten studies on the behavioral responses, there were five studies using SP, three studies using SSP, two studies using SOR, one study using TIE, and one study using CSP. Conclusion : In the characteristics of physiological responses of children with ADHD children to sensory stimulation, there was in the action potential of the cells in hand region of the primary sensorimotor cortex neurons. It was analyzed that there was an initial state and it appeared show a obvious and fast habituation in the later state; the time of recovery seemed to have many non-specific responses. In the characteristics of behavioral responses, there were inattention / distraction, vestibular processing, sensory processing related to endurance / tone, modulation of sensory input affecting emotional responses, low energy/weak.

  • PDF

Immunocytochemical Localization of Parvalbumin and Calbindin-D 28K in Monkey Dorsal Lateral Geniculate Nucleus (원숭이 외측슬상체배측핵에서 칼슘결합단백 Parvalbumin과 Calbindin-D 28K의 분포)

  • Ko, Seung-Hee;Bae, Choon-Sang;Park, Sung-Sik
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.61-77
    • /
    • 1994
  • The calcium-binding proteins (CaBP), parvalbumin (PV) and calbindin-D 28K (calbindin) are particularly abundant and specific in their distribution, and present in different subsets of neurons in many brain regions. Although their physiological roles in the neurons have not been elucidated, they are valuable markers of neuronal subpopulations for anatomical and developmental studies. This study is designed to characterize dorsal lateral geniculate nucleus (dLGN) neurons and axon terminals in terms of differential expression of immunoreactivity (IR) for two well-known CaBPs, PV and calbindin. The experiments were carried out on 6 adult monkeys. Monkeys were perfused under deep Nembutal anesthesia with 2% paraformaldehyde and 0.2% glutaraldehyde in 0.1M phosphate buffer. After removal, the brains were postfixed for 6-8 hr in 2% paraformaldehyde at $4^{\circ}C$ and infiltrated with 30% sucrose at $4^{\circ}C$. Thereafter, they were frozen in dry ice. Serial sections of the thalamus, at $20{\mu}m$, were made in the frontal plane with a sliding microtome. The sections were stained for PV and calbindin with indirect immunocytochemical methods. For electron microscopy, after infiltration with 30% sucrose the blocks of thalamus were serially sectioned at $50{\mu}m$ with a Vibratome in the coronal plane and stained immediately by indirect ABC methods without Triton X-100 in incubation medium. Stained sections were postfixed in 0.2% osmium tetroxide, dehydrated and flat-embedded in Spurr resin. The block was then trimmed to contain only a selected lamina or interlaminar space. The dLGN proper showed strong PV IR in fibers in all laminae and interlaminar zones. Particularly dense staining was noted in layers 1 and 2 that contain many stained fibers from optic tract. Neuronal cell body stained with PV was concentrated only in the laminae. In these laminae staining was moderate in cell bodies of all large and medium-sized neurons, and was strong in cell bodies of some small neurons together with their processes. Calbindin IR was marked in the neuronal cell body and neuropil in the S layers and interlaminar zones whereas moderate in the neuropil throughout the nucleus. Regional difference in distribution of PV and calbindin IR cell is distinct; the former is only in the laminae and the latter in both the S layer and interlaminar space. The CaBP-IR elements were confined to about $10{\mu}m$ in depth of Vibratome section. The IR product for CaBP was mainly associated with synaptic vesicle, pre- and post-synaptic membrane, and outer mitochondrial membrane and along microtubule. PV-IR was noted in various neuronal elements such as neuronal soma, dendrite, RLP, F, PSD and some myelinated or unmyelinated axons, and was not seen in the RSD and glial cells. Only a few neuronal components in dLGN was IR for calbindin and its reaction product was less dense than that of PV, and scattered throughout cytoplasm of soma of some relay neurons, and was also persent in some dendrite, myelinated axons and RLP. The RSD, F, PSD and glial elements were always non-IR for calbindin. Calbindin labelled RLP were presynaptic to unlabeled dendrite or dendritic spine and PSD. Calbindin-labeled dendrite of various sizes were always postsynaptic to unlabeled RSD, RLP or F. From this study it is suggested that dLGN cells of different functional systems and their differential projection to the visual cortex can be distinguished by differential expression of PV and calbindin.

  • PDF

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

Prediction of Amyloid β-Positivity with both MRI Parameters and Cognitive Function Using Machine Learning (뇌 MRI와 인지기능평가를 이용한 아밀로이드 베타 양성 예측 연구)

  • Hye Jin Park;Ji Young Lee;Jin-Ju Yang;Hee-Jin Kim;Young Seo Kim;Ji Young Kim;Yun Young Choi
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.3
    • /
    • pp.638-652
    • /
    • 2023
  • Purpose To investigate the MRI markers for the prediction of amyloid β (Aβ)-positivity in mild cognitive impairment (MCI) and Alzheimer's disease (AD), and to evaluate the differences in MRI markers between Aβ-positive (Aβ [+]) and -negative groups using the machine learning (ML) method. Materials and Methods This study included 139 patients with MCI and AD who underwent amyloid PET-CT and brain MRI. Patients were divided into Aβ (+) (n = 84) and Aβ-negative (n = 55) groups. Visual analysis was performed with the Fazekas scale of white matter hyperintensity (WMH) and cerebral microbleeds (CMB) scores. The WMH volume and regional brain volume were quantitatively measured. The multivariable logistic regression and ML using support vector machine, and logistic regression were used to identify the best MRI predictors of Aβ-positivity. Results The Fazekas scale of WMH (p = 0.02) and CMB scores (p = 0.04) were higher in Aβ (+). The volumes of hippocampus, entorhinal cortex, and precuneus were smaller in Aβ (+) (p < 0.05). The third ventricle volume was larger in Aβ (+) (p = 0.002). The logistic regression of ML showed a good accuracy (81.1%) with mini-mental state examination (MMSE) and regional brain volumes. Conclusion The application of ML using the MMSE, third ventricle, and hippocampal volume is helpful in predicting Aβ-positivity with a good accuracy.