• 제목/요약/키워드: Visual cells

검색결과 188건 처리시간 0.023초

Visual Cells of the Introduced Bluegill Lepomis macrochirus (Pisces; Centropomidae) of Korea

  • Kim, Jae Goo;Park, Jong Young
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.89-92
    • /
    • 2016
  • The bluegill Lepomis macrochirus is an invasive species, not native to Korea, introduced for aquaculture. This species is ranked as a new top predator due to its massive aquatic carnivorous and herbivorous nature by acute vision and the absence of a natural enemy. The visual cells of the retina of L. macrochirus are composed of short single cones and equal double cones and long and bulky rods by light and electron microscopes. In particular, the cones show a regular square mosaic arrangement. This pattern is widely considered as a strong predator. With regard to the visual system, this mosaic pattern may closely be related to a dynamic visual acuity to track and hunt prey.

Distribution of AMPA Glutamate Receptor GluR1 Subunit-immunoreactive Neurons and their Co-Localization with Calcium-binding Proteins and GABA in the Mouse Visual Cortex

  • Kim, Tae-Jin;Ye, Eun-Ah;Jeon, Chang-Jin
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.34-41
    • /
    • 2006
  • The neuronal localization of alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA) glutamate receptor (GluR) subunits is vital as they play key roles in the regulation of calcium permeability. We have examined the distribution of the calcium permeable AMPA glutamate receptor subunit GluR1 in the mouse visual cortex immunocytochemically. We compared this distribution to that of the calcium-binding proteins calbindin D28K, calretinin, and parvalbumin, and of GABA. The highest density of GluR1-immunoreactive (IR) neurons was found in layers II/III. Enucleation appeared to have no effect on the distribution of GluR1-IR neurons. The labeled neurons varied in morphology; the majority were round or oval and no pyramidal cells were labeled by the antibody. Two-color immunofluorescence revealed that 26.27%, 10.65%, and 40.31% of the GluR1-IR cells also contained, respectively, calbindin D28K, calretinin, and parvalbumin. 20.74% of the GluR1-IR neurons also expressed GABA. These results indicate that many neurons that express calcium-permeable GluR1 also express calcium binding proteins. They also demonstrate that one fifth of the GluR1-IR neurons in the mouse visual cortex are GABAergic interneurons.

Evolution of Visual Pigments and Related Molecules

  • Hisatomi, Osamu;Yamamoto, Shintaro;Kobayashi, Yuko;Honkawa, Hanayo;Takahashi, Yusuke;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.41-43
    • /
    • 2002
  • In photoreceptor cells, light activates visual pigments consisting of a chromophore (retinal) and a protein moiety (opsin). Activated visual pigments trigger an enzymatic cascade, called phototransduction cascade, in which more than ten phototransduction proteins are participating. Two types of vertebrate photoreceptor cells, rods and cones, play roles in twilight and daylight vision, respectively. Cones are further classified into several subtypes based on their morphology and spectral sensitivity. Though the diversities of vertebrate photoreceptor cells are crucial for color discrimination and detection of light over a wider range of intensities, the molecular mechanism to characterize the photoreceptor types remains unclear. We investigated the amino acid sequences of about 50 vertebrate opsins, and found that these sequences can be classified into five fundamental subfamilies. Clear relationships were found between these subfamilies and their characteristic spectral sensitivities. In addition to opsins, we studied other phototransduction proteins. The amino acid sequences of phototransduction proteins can be classified into a few subfamilies. Even though their spectral sensitivity is considerably different, cones fundamentally share the phototransduction protein isoforms which are different from those found in rods. It is suggested that the difference in phototransduction proteins between rods and cones is responsible for their sensitivity to light. Isoforms and their selective expression may characterize individual photoreceptor cells, thus providing us with physiological functions such as color vision and daylight/twilight visions.

  • PDF

Study on the Visual Cells in the Retina of Macropodus ocellatus (Pisces, Osphronemidae) Freshwater Fish from Korea (한국산 담수어류 버들붕어, Macropodus ocellatus (Pisces, Osphronemidae) 망막의 시각세포에 관한 연구)

  • Kim, Jae Goo;Park, Jong Yong
    • Korean Journal of Ichthyology
    • /
    • 제29권3호
    • /
    • pp.218-223
    • /
    • 2017
  • Using both light and scanning electron microscopies, it was investigated on the visual cells as well as the eyes of Macropodus ocellatus (Pisces, Osphronemidae). This species had a circular lens and yellowish cornea. The eyes had $3.5{\pm}0.2mm$ which is $31.1{\pm}3.0%$ in a percentage of eye diameter relative to head length. The retina ($158.2{\pm}10.6{\mu}m$) was built of several layers, including the visual cell layer which consists of three types of cells: single cons ($27.8{\pm}1.6{\mu}m$) and equal double cone ($33.9{\pm}3.7{\mu}m$), and large rods ($57.3{\pm}1.3{\mu}m$). The visual cell layer then was classified into the correct pattern. All visual cells were clearly distinguished from two parts (inner and outer segments). The elongated rod cells were extend to the bottom of the retinal pigment epithelium. In scanning electron microscopy, the outer segment links to inner segment by so-called calyceal piles. The M. ocellatus single and double cones appearance form a flower-petal arrangement, which is a regular mosaic pattern that contains quadrilateral units by four double cones surrounding a single cone.

Fine Structure of Retinae of Cephalopods (Todarodes pacificus And Octopus minor) Inhabiting the Korean Waters I (한국 연근해산 두족류 (Todarodes pacificus And Octopus minor) 망막 (Retina)의 미세구조 I)

  • Han, Jong-Min;Chang, Nam-Sub
    • Applied Microscopy
    • /
    • 제32권1호
    • /
    • pp.17-30
    • /
    • 2002
  • The retinae of Todarodes pacificus and Octopus minor are divided into four layers that are an outer segment, a rod base region, an inner segment, and a plexiform layer, respectively. The retina of Octopus minor is about $20{\mu}m$ thicker ($400{\sim}420{\mu}m$) than that of Todarodes pacificus ($385{\sim}400{\mu}m$). A retina is composed of visual cells and supporting cells. The microvilli of length $0.6{\sim}0.7{\mu}m$ are packed densely on top of the supporting cells of Octopus minor while they are not found in Todarodes pacificus. The visual cells and supporting cells have pigment granules that exclude light. In case of Todarodes pacificus, the pigment granules of the visual cell are larger ($2.0{\times}0.5{\mu}m$) than those of the supporting cell ($1.0{\times}0.3{\mu}m$). But, the sizes of both cells are similar in Octopus minor. In the upper portion of a visual cell, microvilli shaped like a comb are forming a rhabdome (diameter, 60 nm) of a hexagonal structure. The rhabdome consists of 4 rhabdomere and the total area of a rhabdom of Octopus minor is larger than that of Todarodes pacificus. The synaptosome constructing a plexiform layer in Todarodes pacificus are divided into two types, each of which possess electron dense-core vesicles and electron lucent vesicles, respectively. Octopus minor also has two types of synaptosomes but each type comprises a mixture of electron dense vesicles and electron lucent vesicles, and electron lucent vesicles only, respectively, which is different from the case of Todarodes pacificus.

Study on the Fine Structure of Retina of Anterior Lateral Eyes in Pardosa astrigera L. Koch (Aranea: Lycosidae) (별늑대거미 (Pardosa astrigera L. Koch) 전측안(前側眼) 망막(綱膜)의 미세구조(微細構造)에 관한 연구)

  • Jeong, Moon-Jin;Moon, Myung-Jin
    • Applied Microscopy
    • /
    • 제24권3호
    • /
    • pp.1-9
    • /
    • 1994
  • Pardosa astrigera possessed eight eyes arranged in three rows on the frontal carapace. A pair of small anterior lateral eyes (ALE) flanked each side by an anterior median eyes (AME) lay along the anterior margin that was situated on the anterior row of clypeus. The anterior lateral eye was composed of cornea, vitreous body, and retina. Cornea was made up mainly of exocuticle lining the cuticle. Lens in anterior lateral eye was biconvex type which bulged into the cavity of the eyecup. Outer and inner central region of lens were approximately spherical with radius of curvature $5.6{\mu}m$ and $12.5{\mu}m$, respectly. Vitreous body formed a layer between the cuticular lens and retina. They formed biconcave shape. Retina of the anterior lateral eyes was composed of three types of cells: visual cells, glia cells, and pigment cells. The visual cells were unipolar neuron, as were the receptor of the posterior lateral eye. But cell body was unique to the anterior lateral eyes. They were giant cell, relatively a few in number, and under the layer of vitreous bodies. Each visual cell healed rhabdomeres for a short stretch beneath the cell body. Rhabdomes were irregulary pattern in retina and electron dense pigment granules scattered between the rhabdomes. Glia cell situated at the cell body of visual cell and glia cell process reached to rhabdomere portion. Below the rhabdome, tapetum were about $30{\mu}m$ distance from lens, which composed of 4-5 layers. It was about $25{\mu}m$ length that intermediate segment of distal portion of visual cell. Electron dense pigment granules between the intermediate segment were observed.

  • PDF

A Study on Image Recognition based on the Characteristics of Retinal Cells (망막 세포 특성에 의한 영상인식에 관한 연구)

  • Cho, Jae-Hyun;Kim, Do-Hyeon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • 제11권11호
    • /
    • pp.2143-2149
    • /
    • 2007
  • Visual Cortex Stimulator is among artificial retina prosthesis for blind man, is the method that stimulate the brain cell directly without processing the information from retina to visual cortex. In this paper, we propose image construction and recognition model that is similar to human visual processing by recognizing the feature data with orientation information, that is, the characteristics of visual cortex. Back propagation algorithm based on Delta-bar delta is used to recognize after extracting image feature by Kirsh edge detector. Various numerical patterns are used to analyze the performance of proposed method. In experiment, the proposed recognition model to extract image characteristics with the orientation of information from retinal cells to visual cortex makes a little difference in a recognition rate but shows that it is not sensitive in a variety of learning rates similar to human vision system.

Accurate Representation of Light-intensity Information by the Neural Activities of Independently Firing Retinal Ganglion Cells

  • Ryu, Sang-Baek;Ye, Jang-Hee;Kim, Chi-Hyun;Goo, Yong-Sook;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권3호
    • /
    • pp.221-227
    • /
    • 2009
  • For successful restoration of visual function by a visual neural prosthesis such as retinal implant, electrical stimulation should evoke neural responses so that the informat.ion on visual input is properly represented. A stimulation strategy, which means a method for generating stimulation waveforms based on visual input, should be developed for this purpose. We proposed to use the decoding of visual input from retinal ganglion cell (RGC) responses for the evaluation of stimulus encoding strategy. This is based on the assumption that reliable encoding of visual information in RGC responses is required to enable successful visual perception. The main purpose of this study was to determine the influence of inter-dependence among stimulated RGCs activities on decoding accuracy. Light intensity variations were decoded from multiunit RGC spike trains using an optimal linear filter. More accurate decoding was possible when different types of RGCs were used together as input. Decoding accuracy was enhanced with independently firing RGCs compared to synchronously firing RGCs. This implies that stimulation of independently-firing RGCs and RGCs of different types may be beneficial for visual function restoration by retinal prosthesis.

Actionspectra for Circadian Melatonin Rhythms in the Avian Pineal In Vitro

  • Kondo, Chieko;Haldar, Chandana;Tamotsu, Satoshi;Oishi, Tadashi
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.249-251
    • /
    • 2002
  • The avian pineal as well as the retina has been known to contain several types of photoreceptors with different visual pigments such as rhodopsin, iodopsin and the pineal specific opsin, pinopsin. These organs are also known to have circadian clock to regulate melatonin production. Exposure of animals to light causes a decline of the melatonin level and the phase shifts of melatonin rhythms in the pineal and retina. Therefore, the circadian clock system of these organs seem to consist of three elements, i.e., light input, oscillator and melatonin output systems. In birds, it was suggested that rhodopsin might be involved in the entrainment of pineal melatonin rhythms from the action spectrum experiment for controlling NAT activity rhythms. However, there are much more pinopsin-immunoreactive (Pino-IR) cells than rhodopsin (Rho-IR) and iodopsin (Iodo-IR) cells in the avian pineal. We found that Pino-IR cells appeared earlier embryonic stages than Rho-IR and Iodo-IR cells. So, we tried to identify the visual pigments involved in the circadian melatonin rhythms in the pineal and retina. Organ cultured pineals were exposed to monochromatic light to find out which opsin participates in regulation of melatonin rhythms. The action spectra showed a peak at 475nm, suggesting that pinopsin is the major photopigment to regulate melatonin production in birds.

  • PDF