• Title/Summary/Keyword: Visual ISM

Search Result 16, Processing Time 0.025 seconds

A BIPOLAR PLANETARY NEBULA NGC 6537: PHOTOIONIZATION OR SHOCK HEATING?

  • HYUNG SIEK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.55-63
    • /
    • 1999
  • NGC 6537 is an extremely high excitation bipolar planetary nebula. It exhibits a huge range of excitation from lines of [N I] to [Si VI]or [Fe VII], i.e. from neutral atoms to atoms requiring an ionization potential of $\~$167eV. Its kinematical structures are of special interest. We are here primarily concerned with its high resolution spectrum as revealed by the Hamilton Echelle Spectrograph at Lick Observatory (resolution $\~0.2{\AA}$) and supplemented by UV and near-UV data. Photoionization model reproduces the observed global spectrum of NGC 6537, the absolute H$\beta$ flux, and the observed visual or blue magnitude fairly well. The nebulosity of NGC 6537 is likely to be the result of photo-ionization by a very hot star of $T_{eff} \~ 180,000 K$, although the global nebular morphology and kinematics suggest an effect by strong stellar winds and resulting shock heating. NGC 6537 can be classified as a Peimbert Type I planetary nebula. It is extremely young and it may have originated from a star of about 5 $M_{\bigodot}$.

  • PDF

DISTANCE DETERMINATION TO THE MOLECULAR CLOUDS IN THE GALACTIC ANTI-CENTER REGION

  • KIM HYUN-GOO;LEE YOUNGUNG;PARK BYEONG-GON;KIM BONG-GYU
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.151-158
    • /
    • 2000
  • We conducted a deep CCD observations in V band to obtain stellar density distribution and to determine the distances toward two molecular clouds with anomalous velocity in the Galactic anti-center region. Star count method based on the linear programming technique was applied to the CCD photometric data. We found two prominent peaks at distances of around 1.4 and 2.7 kpc. It is found that the first peak coincides well with stellar density enhancement of B8-A0 stars and the second one with the outer Perseus arm. The effect of the choice of the luminosity function is discussed. The stellar number density distribution is used to derive the distances to the molecular clouds and the visual extinctions caused by the clouds. We found that two molecular clouds are located almost at the same distance of about 1.1 $\pm$ 0.1 kpc, and the peak extinctions caused by the clouds are about 2.2 $\pm$ 0.3 mag in V band.

  • PDF

CO OBSERVATIONS OF A HIGH LATITUDE CLOUD MBM 40 WITH A HIGH RESOLUTION AUTOCORRELATOR

  • LEE YOUNGUNG;CHUNG HYUN SOO;KIM HYORYOUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.2
    • /
    • pp.97-103
    • /
    • 2002
  • We have mapped 1 $deg^2$ region toward a high latitude cloud MBM 40 in the J = 1 - 0 transition of $^{12}CO$ and $^{13}CO$, using the 3 mm SIS receiver on the 14 m telescope at Taeduk Radio Astronomy Observatory. We used a high resolution autocorrelator to resolve extremely narrow CO linewidths of the molecular gas. Though the linewidth of the molecular gas is very narrow (FWHP < 1 km $s^{-1}$ ), it is found that there is an evident velocity difference between the middle upper part and the lower part of the cloud. Their spectra for both of $^{12}CO$ and $^{13}CO$ show blue wings, and the position-velocity map shows clear velocity difference of 0.4 km $s^{-1}$ between two parts. The mean velocity of the cloud is 3.1 km $s^{-1}$. It is also found that the linewidths at the blueshifted region are broader than those of the rest of the cloud. We confirmed that the visual extinction is less than 3 magnitude, and the molecular gas is translucent. We discussed three mass estimates, and took a mass of 17 solar masses from CO integrated intensity using a conversion factor $2.3 {\times} 10^{20} cm^{-2} (K\;km s^{-1})^{-1}$. Spatial coincidence and close morphological similarity is found between the CO emission and dust far-infrared (FIR) emission. The ratio between the 100 f.Lm intensity and CO integrated intensity of MBM 40 is 0.7 (MJy/sr)/(K km $s^{-1}$), which is larger than those of dark clouds, but much smaller than those of GMCs. The low ratio found for MBM 40 probably results from the absence of internal heating sources, or significant nearby external heating sources.

Diagnostics to Probe Environmental Effects on Late-type Galaxies in the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.70.1-70.1
    • /
    • 2012
  • We investigate 53 late-type galaxies in Virgo to get better understanding galaxy evolution driven by environmental effects in the cluster. The goal is to study how galaxies are strongly affected gravitationally by their surroundings and/or how interstellar medium (ISM) of galaxies changes through the interaction with intracluster medium (ICM). To quantify these, a variety of diagnostic methods have been introduced. Our diagnostics have two different perspectives. First, we have carefully examined the morphological and kinematical properties of individual galaxies using high resolution HI images and compared with multi-wavelength data. Based on the visual inspection, we have identified signatures of the interactions with other galaxies or the ICM. Second, we have quantified influence of local environments of individual galaxies using X-ray data and optical catalog of the cluster. By combining all the diagnostics, we have identified the environmental effect(s) at work on individual galaxies. We also probe the environmental processes as a function of the cluster centric distance. Various gravitational interactions are found throughout the cluster, while the ICM-ISM interaction is mainly dominant near the cluster center. However, we find some evidence that galaxies start losing their gas already in the low density outskirts of the cluster.

  • PDF

A Study on Icongraphics and Minimalism in Design Expression (미니멀리즘적 디자인 표현과 아이콘그래픽스에 대한 고찰)

  • Chung, Jin Sook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.105-116
    • /
    • 2012
  • Minimalism combines the adjective 'minimal' and the suffix 'ism', and was first coined in the 1960s. Minimalism draws on the belief that when the use of artistic skills and adaptation is minimized and only the essentials or core is expressed, the discrepancy or distance between reality and art can be kept to a minimum; and thus, true reality can be achieved. To realize minimalism, artists creating paintings, sculptures and other forms of visual art eliminate unnecessary elements and strip objects to its essentials. And hence, most minimalist artwork used minimum amount of color and focused on expressing the geometric essence of objects. Such simplistic styles of minimalism can be seen today in various designs. Apple's iPod design and other product designs as well as graphic designs are just few of the examples. Drawing on the spirit of minimalism, Icongraphics pursues beauty and pleasure in the minimal use of color and form. And what lies beneath Icongraphics' artistic style is its pursuit of simplistic essentials, sending a strong message to the digitalized and complex lives of modern people.

Study of Environmental Impact on the Galaxy Evolution in the Virgo Cluster

  • Lee, Woong;Rey, Soo-Chang;Kim, Suk;Chung, Jiwon;Lee, Youngdae;Chung, Aeree;Yoon, Hyein
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.47.3-48
    • /
    • 2015
  • We present environmental effects on the galaxy evolution in the Virgo cluster focusing on intracluster medium - interstellar medium (ICM-ISM) interactions and gravitational interactions. We identify signatures of these environmental effects for 21 massive late-type galaxies based on the visual inspection of high resolution HI data from VLA Imaging of Virgo spirals in Atomic gas (VIVA) survey comparing with multi-wavelength data. We classify galaxies into three subgroups showing different environmental effects. First and second groups includes galaxies influenced by ongoing/active and past ram pressure stripping effect, respectively. Third group consists of galaxies undergoing gravitational interactions. Additionally, we define neighbor galaxies for each VIVA galaxies utilizing kinematic data from Extended Virgo Cluster Catalog. Assuming that neighbor galaxies share similar levels of environmental effects with host VIVA galaxies, we investigate environmental effects on galaxy properties in different subgroups using SDSS optical and GALEX ultraviolet photometric data. We find that dwarf neighbor galaxies in first and second groups show rapid quenching of their star formation (SF), while massive counterparts are still in SF activity. On the other hand, most third group galaxies show hints of SF activity regardless of their mass. We conclude that SF and evolution of galaxy in the cluster environment is closely linked to ICM-ISM interactions and dwarf galaxies seem to be more sensitive to this effect compared to massive counterparts.

  • PDF

A NEAR-INFRARED STUDY OF THE HIGHLY-OBSCURED ACTIVE STAR-FORMING REGION W51B

  • Kim, Hyo-Sun;Nakajima, Yasushi;Sung, Hwan-Kyung;Moon, Dae-Sik;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.17-28
    • /
    • 2007
  • We present wide-field $JHK_s$-band photometric observations of the three compact H II regions G48.9-0.3, G49.0-0.3, and G49.2-0.3 in the active star-forming region W51B. The star clusters inside the three compact H II regions show the excess number of stars in the $J-K_s$ histograms compared with reference fields. While the mean color excess ratio $(E_{J-H}/E_{H-K_s})$ of the three compact H II regions are similar to ${\sim}2.07$, the visual extinctions toward them are somewhat different: ${\sim}17$ mag for G48.9-0.3 and G49.0-0.3; ${\sim}23$ mag for G49.2-0.3. Based on their sizes and brightnesses, we suggest that the age of each compact H II region is ${\leq}2\;Myr$. The inferred total stellar mass, ${\sim}1.4{\times}10^4M_{\odot}$, of W51B makes it one of the most active star forming regions in the Galaxy with the star formation efficiency of ${\sim}10%$.