• Title/Summary/Keyword: Visual Feedback Training

Search Result 118, Processing Time 0.028 seconds

The Effects of Treatment With a TETRAX on Balance and Mobility in Acute Stroke Patients (균형능력 운동치료 시스템을 이용한 치료가 급성기 뇌졸중 환자의 균형과 이동능력에 미치는 영향)

  • Lee, Nam-Hyun;Lee, Jin;Lee, Kang-Noh
    • Physical Therapy Korea
    • /
    • v.17 no.3
    • /
    • pp.11-19
    • /
    • 2010
  • The purpose of the study was to determine the effects of balance training with 'TETRAX' system, a balance training and assessment tool, on balance and mobility in acute hemiplegic patients. Nineteen matched subjects were assigned randomly into either an experimental group or a control group. An experimental group with 10 subjects received balance training with 'TETRAX' exercise program and conventional physical therapy interventions 5 times per week during 4 weeks. A control group with 9 subjects received conventional physical therapy interventions 5 times per week during 4 weeks. Outcome measures were taken before and after 4 weeks of interventions using the Stroke Rehabilitation Assessment of Movement (STREAM), the Berg Balance Scale (BBS), gait speed, and the fall down index. Results indicated that both exercise groups improved significantly in STREAM, BBS, and gait speed (p<.05). The experimental group had a little improvement than the control group. Both exercise groups did not show statistical significance in fall down index (p<.05). Following 4 weeks of intervention, except gait speed there was no statistically significant difference between two groups. However, these findings suggest that conventional physical therapy interventions with visual feedback training could be effective on improving balance and mobility than conventional physical therapy alone in acute hemiplegic patients.

Effect of Partial Weight Supported Treadmill Training on Balance, Dysfunction and Pain in Patients With Chronic Low Back Pain (부분적 체중부하를 통한 트레드밀 훈련이 만성요통환자의 균형능력과 기능장애, 통증에 미치는 영향)

  • Kim, Dae-hyun;Kim, Suhn-yeop
    • Physical Therapy Korea
    • /
    • v.23 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • Background: Patients with chronic low back pain (CLBP) functionally adapt to decreased postural control due to impaired processing of sensory information. Standing postural control has been the focus of recent research in CLBP. Change in postural control may be a risk factor for CLBP, although available studies are not conclusive. Objects: This study aimed to identify the role of partial weight supported treadmill training (PWSTT) in improving balance, dysfunction, and pain in patients with chronic low back pain. Methods: The study included 22 patients with CLBP. Patients in the control group ($n_1=8$) performed three 20 min stabilization exercise sessions per week, for 4 weeks. Patients in the full weight treadmill training group ($n_2=7$) performed treadmill training for 30 min after stabilization exercise. Patients in the PWSTT group ($n_3=7$) performed PWSTT with 20% of their body weight unloaded after stabilization exercises. By using the Biodex balance system, the dynamic balance abilities of the patients in the three groups were assessed in the quiet standing position under combined conditions of visual feedback (eyes open and closed) and platform stability (level 8). The Korean version of the Oswestry Disability Index and visual analogue scale score were used as the main measure. Results: The results of this study showed that dysfunction and pain were significantly improved in all groups. Although dynamic postural stability with eyes closed was significantly improved only in the PWSTT group (p<.05), no significant difference was found in the other groups. Conclusion: The results of this study indicate that PWSTT improved balance, dysfunction and pain in the patients with CLBP. Thus, this intervention is necessary for patients with CLBP with decreased postural control.

Adaptive Mass-Spring Method for the Synchronization of Dual Deformable Model (듀얼 가변형 모델 동기화를 위한 적응성 질량-스프링 기법)

  • Cho, Jae-Hwan;Park, Jin-Ah
    • Journal of the Korea Computer Graphics Society
    • /
    • v.15 no.3
    • /
    • pp.1-9
    • /
    • 2009
  • Traditional computer simulation uses only traditional input and output devices. With the recent emergence of haptic techniques, which can give users kinetic and tactile feedback, the field of computer simulation is diversifying. In particular, as the virtual-reality-based surgical simulation has been recognized as an effective training tool in medical education, the practical virtual simulation of surgery becomes a stimulating new research area. The surgical simulation framework should represent the realistic properties of human organ for the high immersion of a user interaction with a virtual object. The framework should make proper both haptic and visual feedback for high immersed virtual environment. However, one model may not be suitable to simulate both haptic and visual feedback because the perceptive channels of two feedbacks are different from each other and the system requirements are also different. Therefore, we separated two models to simulate haptic and visual feedback independently but at the same time. We propose an adaptive mass-spring method as a multi-modal simulation technique to synchronize those two separated models and present a framework for a dual model of simulation that can realistically simulate the behavior of the soft, pliable human body, along with haptic feedback from the user's interaction.

  • PDF

Effects of 3-dimensional balance trainer in combination with a video-game system on balance and gait ability in subacute stroke patients

  • Ha, Hyun Geun;Ko, Young Jun;Lee, Hwang Jae;Lee, Wan Hee
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Objective: The purpose of this study was to investigate the effects of a three dimensional balance trainer in combination with a video-game system and visual feedback on balance recovery and gait function in subacute stroke patients. Design: Randomized controlled trial. Methods: Twenty-three subacute stroke patients were assigned to either an experimental (n=12) or a control group (n=11) using a random permuted block design and sealed envelopes. The experimental group received additional 3-dimensional balance training combined with visual feedback and a game program for 30 min/day, 5 days/week for 4 weeks. Both groups received 30-min of conservative physical therapy sessions based on neurodevelopmental therapy. Before and after the 20 sessions, walking abilities were evaluated by the the GaitRite system and balances were evaluated using the Berg Balance Scale (BBS). The Trunk Impairment Scale (TIS) was used to assess trunk muscle performances. Results: After the 4-week intervention, BBS and TIS scores were significantly increased in both groups (p<0.05), and increases in these scores were significantly greater in the experimental group (p<0.05). After the 4-week intervention, gait speed and cadence were significantly increased in both groups (p<0.05), and as was observed for BBS and TIS scores, changes of gait speed and cadence were significantly greater in the experimental group (p<0.05). Conclusions: The study shows that the 3-dimensional balance trainer combined with visual biofeedback and a video-game system provides a therapeutic means for improving balance and gait ability in subacute stroke patients.

Comparison of the Effects of Dynamic Postural Stability Training Versus Soft Ankle Bracing on Multiple Hop Performance in Participants With Functional Ankle Instability (기능적 발목 불안정성을 가진 대상자에게 동적 자세 안정성 훈련과 연성 발목 보조기가 다중 한발 뛰기 수행에 미치는 효과 비교)

  • Cha, Youn-sang;Park, Kyue-nam
    • Physical Therapy Korea
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: The multiple hop test is an active performance test that has been commonly used to assess individuals with functional ankle instability. Previous studies have suggested that insufficiency of dynamic postural stability and passive stability during dynamic activities can have an influence on performance in the multiple hop test. However, no study has investigated the effects of dynamic postural stability training and ankle bracing on multiple hop test performance in individuals with functional ankle instability. Objects: The purpose of this study was to compare the immediate effects of dynamic postural stability training versus ankle bracing in the performance of the multiple hop test for participants with functional ankle instability. Methods: Twenty-nine participants with functional ankle instability who scored below 24 in the Cumberland Ankle Instability Tool were selected. The participants were randomly divided into two groups: a dynamic postural stability training group (n1=14) and an ankle bracing control group ($n_2=15$). The multiple hop tests were performed before and after applying each intervention. Dynamic postural stability training was performed using visual-feedback-based balance-training equipment; participants in this group were asked to perform a heel raise in a standing position while watching the centering of their forefoot pressure to prevent excessive ankle inversion. Ankle bracing was applied in the control group. Results: When comparing the pre- and post-intervention period for both groups, both methods significantly improved the results of the multiple hop test (p<.05). However, no significant differences were shown between the dynamic postural stability training and ankle bracing groups (p>.05). Conclusion: Both dynamic postural stability training and ankle bracing showed significant improvement (2.85 seconds and 2.05 seconds, respectively) in test performance. Further study is needed to determine the long-term effects of dynamic postural stability training and to determine whether insufficient dynamic postural stability is a causative factor for functional ankle instability.

Study on the Improvement of Equilibrium Sense of the Elderly Using Virtual Bicycle System (가상 자전거 시스템을 이용한 고령자의 평형감각 증진에 관한 연구)

  • Jeong, S.H.;Piao, Y.J.;Lee, S.M.;Kwon, T.K.;Hong, C.U.;Kim, N.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.388-390
    • /
    • 2005
  • In this paper, a new rehabilitation training system was developed to improve equilibrium sense by combining virtual reality technology with a fixed exercise bicycle. The subjects consisted of two groups. A group of young people, was compared against a group of elderly. We measured three different running modes of virtual bicycle system with two successive sets. The parameters measured were running time, velocity, the weight movement, the degree of the deviation from the road, and the variables about the center of pressure. The repeated training, our results showed that the running capability of the elderly improve compared, In addition, it was found out that the ability of postural control and the equilibrium sense was improved with the presentation of the visual feedback information of the distribution of weight. From the results of this experiment, we showed that our newly developed system might be useful in the diagnosis of equilibrium sense or in the improvement of the sense of sight and, somatic, and vestibular sense of the elderly in the field of rehabilitation training.

  • PDF

Effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors: a preliminary study

  • Cho, Ki Hun;Song, Won-Kyung
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.2
    • /
    • pp.93-98
    • /
    • 2019
  • Objective: The purpose of this study was to investigate the effect of robot arm reach training on upper extremity functional movement in chronic stroke survivors. Design: One group pretest-posttest design. Methods: Thirteen chronic stroke survivors participated in this study. Robot arm reach training was performed with a Whole Arm Manipulator (WAM) and a 120-inch projective display to provide visual and auditory feedback. During the robotic arm reach training, WAM provided gravity compensation and assist-as-needed (AAN) force according to the robot control mode. When a participant could not move the arm toward the target for more than 2 seconds, WAM provided AAN force to reach the desired targets. All patients participated in the training for 40 minutes per day, 3 times a week, for 4 weeks. Main outcome measures were the Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT) and Box and Block Test (BBT) to assess upper extremity functional movement. Results: After 4 weeks, significant improvement was observed in upper extremity functional movement (FMA: 42.15 to 46.23, BBT: 12.23 to 14.00, p<0.05). In the subscore analysis of the FMA upper extremity motor function domains, significant improvement was observed in upper extremity and coordination/speed units (p<0.05). However, there were no significant differences in the ARAT. Conclusions: This study showed the positive effects of robot arm reach training on upper extremity functional movement in chronic stroke survivors. In particular, we confirmed that robot arm reach training could have a positive influence by leading to improvement of motor recovery of the proximal upper extremity.

Physical Therapy Clinical Practice and Documentation for Pusher Syndrome in Stroke Patients: Case Report (밀기증후군을 가진 뇌졸중 환자에 대한 임상 실기와 문서화: 사례보고)

  • Hwang, Ki-Kyeong;Song, Su-Young;Doo, Yeong-Taek;Yoon, Se-Won;Lee, Jeong-Woo
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.9 no.1
    • /
    • pp.41-49
    • /
    • 2011
  • This study purposes to conduct visual feedback and body posture control training on stroke patients with pusher syndrome in order to reduce their pusher syndrome. This study also examines changes resulting from the training and applies the guidelines necessary for documentation of patient/customer management. The participant for this study was one patient with pusher syndrome. The study progressed from a medical examination of the subject followed by evaluation, diagnosis, prognosis, intervention and treatment plan, and finally re-examination in order of precedence. Problems in the participant's functional activities, difficulties in changes from sitting postures into standing postures, and maintaining standing postures were determined as primary restrictions on activities and the improvement of these activities was set up as a goal through discussions with the patient. Interventions were mainly implemented to reduce the pusher syndrome with visual feedback provided using mirrors and exercises focusing on leaning in order to maintain posture while sitting. Changes from supine postures to sitting postures and the degree of changes in maintaining standing postures were compared between before and after the intervention by measuring times in the same environment and the degree of pusher syndrome was measured using the SCP tool. The process of this clinical practice was documented. The SCP score that indicates the degree of changes in the participant's pusher syndrome changed from 3.75 points to 0.8 point indicating a decrease in pushing. Among functional activities, posture changes from sitting postures to standing postures and maintaining standing postures were improved. In addition, since the patient could maintain standing postures, the patient could walk indoors. In this case study, mirrors and body posture control training used as interventions to relieve pusher syndromes can be easily applied in clinics to examine the form of functional recovery. The results indicated that these intervention methods were effective and thus it is thought that the results can be used as basic data to utilize these intervention methods diversely. In addition, the documentation of patient/client management was applied as actual documentation in Korean and based on the results, we could show decision making processes for patients' functional goals and objectively explain problems, prognoses and changes made through the interventions.

An Approach for the Cross Modality Content-Based Image Retrieval between Different Image Modalities

  • Jeong, Inseong;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.585-592
    • /
    • 2013
  • CBIR is an effective tool to search and extract image contents in a large remote sensing image database queried by an operator or end user. However, as imaging principles are different by sensors, their visual representation thus varies among image modality type. Considering images of various modalities archived in the database, image modality difference has to be tackled for the successful CBIR implementation. However, this topic has been seldom dealt with and thus still poses a practical challenge. This study suggests a cross modality CBIR (termed as the CM-CBIR) method that transforms given query feature vector by a supervised procedure in order to link between modalities. This procedure leverages the skill of analyst in training steps after which the transformed query vector is created for the use of searching in target images with different modalities. Current initial results show the potential of the proposed CM-CBIR method by delivering the image content of interest from different modality images. Despite its retrieval capability is outperformed by that of same modality CBIR (abbreviated as the SM-CBIR), the lack of retrieval performance can be compensated by employing the user's relevancy feedback, a conventional technique for retrieval enhancement.

Challenges in neuro-machine interaction based active robotic rehabilitation of stroke patients

  • Song, Aiguo;Yang, Renhuan;Xu, Baoguo;Pan, Lizheng;Li, Huijun
    • Advances in robotics research
    • /
    • v.1 no.2
    • /
    • pp.155-169
    • /
    • 2014
  • Study results in the last decades show that amount and quality of physical exercises, then the active participation, and now the cognitive involvement of patient in rehabilitation training are known of crux to enhance recovery outcome of motor dysfunction patients after stroke. Rehabilitation robots mainly have been developing along this direction to satisfy requirements of recovery therapy, or focusing on one or more of the above three points. Therefore, neuro-machine interaction based active rehabilitation robot has been proposed for assisting paralyzed limb performing designed tasks, which utilizes motor related EEG, UCSDI (Ultrasound Current Source Density Imaging), EMG for rehabilitation robot control and feeds back the multi-sensory interaction information such as visual, auditory, force, haptic sensation to the patient simultaneously. This neuro-controlled and perceptual rehabilitation robot will bring great benefits to post-stroke patients. In order to develop such kind of robot, some key technologies such as noninvasive precise detection of neural signal and realistic sensation feedback need to be solved. There are still some grand challenges in solving the fundamental questions to develop and optimize such kind of neuro-machine interaction based active rehabilitation robot.