• 제목/요약/키워드: Visual Feature

검색결과 747건 처리시간 0.031초

Siame-FPN기반 객체 특징 추적 알고리즘 (Object Feature Tracking Algorithm based on Siame-FPN)

  • 김종찬;임수창
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.247-256
    • /
    • 2022
  • Visual tracking of selected target objects is fundamental challenging problems in computer vision. Object tracking localize the region of target object with bounding box in the video. We propose a Siam-FPN based custom fully CNN to solve visual tracking problems by regressing the target area in an end-to-end manner. A method of preserving the feature information flow using a feature map connection structure was applied. In this way, information is preserved and emphasized across the network. To regress object region and to classify object, the region proposal network was connected with the Siamese network. The performance of the tracking algorithm was evaluated using the OTB-100 dataset. Success Plot and Precision Plot were used as evaluation matrix. As a result of the experiment, 0.621 in Success Plot and 0.838 in Precision Plot were achieved.

Video Captioning with Visual and Semantic Features

  • Lee, Sujin;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • 제14권6호
    • /
    • pp.1318-1330
    • /
    • 2018
  • Video captioning refers to the process of extracting features from a video and generating video captions using the extracted features. This paper introduces a deep neural network model and its learning method for effective video captioning. In this study, visual features as well as semantic features, which effectively express the video, are also used. The visual features of the video are extracted using convolutional neural networks, such as C3D and ResNet, while the semantic features are extracted using a semantic feature extraction network proposed in this paper. Further, an attention-based caption generation network is proposed for effective generation of video captions using the extracted features. The performance and effectiveness of the proposed model is verified through various experiments using two large-scale video benchmarks such as the Microsoft Video Description (MSVD) and the Microsoft Research Video-To-Text (MSR-VTT).

A study on the expansibility of sound-responsive visual art contents

  • Jiang, Qianqian;Chung, Jean-Hun
    • International journal of advanced smart convergence
    • /
    • 제11권2호
    • /
    • pp.88-94
    • /
    • 2022
  • The relationship between sound and vision was experimentally confirmed by physicist Ernst Florens Friedrich Chladni as early as the 18th century and formally entered into systematic research. With the development of emerging media technology, sound reactive type visual content is not limited to a single visual interaction based on the vibration of sound, and its visual content shows a diversified and scalable development trend according to different purposes in many fields. This study analyzes the development and changes of sound visual art contents from early stage to modernization, and analyzes the development characteristic of sound visual art content in different fields and scene environments influence by interactive media, new media technologies and devices by means of case analysis. Through this research, it is expected that the sound reactive type visual art content can continue to develop and extend in the existing fields, while explore the scalability of the application of sound reactive type visual art content in more fields.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • 대한원격탐사학회지
    • /
    • 제36권4호
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권2호
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

시차 분포 특성을 이용한 오토스테레오스코픽 3차원 디스플레이 시청 피로도 개선 방법 (Visual Comfort Enhancement of Auto-stereoscopic 3D Display using the Characteristic of Disparity Distribution)

  • 김동현;손광훈
    • 전자공학회논문지
    • /
    • 제53권3호
    • /
    • pp.107-113
    • /
    • 2016
  • 시청 피로 정도는 3차원 디스플레이의 성능을 평가할 수 있는 여러 요소 중 하나이다. 3차원 디스플레이의 시청 피로도를 개선하기 위한 많은 연구 중 시차 조정 방법은 3차원 영상의 시차를 적절한 분포를 가지도록 하는 간단한 방법으로써 많은 연구가 진행되고 있다. 본 논문에서는 시차 장벽 방식의 오토스테레오스코픽 3차원 디스플레이에서 시차 분포가 시청 피로에 미치는 영향을 기반으로 수평 영상 이동 방식을 이용하여 시차 조정하는 방법을 제안한다. 제안하는 방법은 Speeded-Up Robust Feature(SURF)를 이용하여 3차원 영상의 시차 분포를 구하고, 이전 연구를 통해 구한 시차 분포가 시청 피로에 미치는 영향을 토대로 시차 조정 정도를 결정하고 3차원 영상의 시차를 조정한다. 제안 방법의 성능을 평가하기 위하여, 우리는 실제 제작된 시차 장벽 방식의 오토스테레오스코픽 3차원 디스플레이를 사용하여 최적 시청 거리에서 주관 평가를 실시한다. 실험 결과는 다양한 시차 분포를 가지는 3차원 영상에 대하여 제안 방법을 적용 한 후 시청 피로 정도가 감소함을 보여준다.

화상 특징량을 이용한 로봇제어 알고리즘 (An Algorithm of the Robot Control Using Image Feature Value)

  • 허형팔
    • 전자공학회논문지T
    • /
    • 제36T권2호
    • /
    • pp.48-55
    • /
    • 1999
  • 로봇이 환경변화에 능동적으로 대처하기 위해서는 화상정보를 이용한 시각귀환제어(VFC)가 필요하다. 시각귀환 제어시스템은 매니퓰레이터와 카메라로 구성되는데, 고정된 시각시스템의 경우, 특징량이 동일선상에 위치하면 시각귀환제어를 할 수 없는 특이치 문제가 발생한다. 특이치 문제를 해결하기 위한 방법으로 이미지 자코비안의 상태값을 정의하고, 여러가지 경우 특징량을 조합 평가하여 이용 가능한 특징량을 선택하는 방법이 있다. 그러나 이 방법은 특징량의 수를 증가해야하는 단점이 있다. 그러므로 본 논문에서는 시각귀환시스템의 카메라를 능동적으로 이동시키므로써 특이치가 발생하지 않는 알고리즘을 제안하고, 시뮬레이션을 통해 그 유효성을 확인한다.

  • PDF

증강현실 응용을 위한 자연 물체 인식 (Natural Object Recognition for Augmented Reality Applications)

  • 안잔 쿠마르 폴;모하마드 카이룰 이슬람;민재홍;김영범;백중환
    • 융합신호처리학회논문지
    • /
    • 제11권2호
    • /
    • pp.143-150
    • /
    • 2010
  • 무마커 증강현실 시스템은 실내나 옥외 환경에서 자연 물체를 인식하고 매칭하는 기능이 필수적이다. 본 논문에서는 비주얼 서술자와 코드북을 사용하여 특징을 추출하고 자연 물체를 인식하는 기법을 제안한다. 증강현실 응용은 동작 속도와 실시간 성능에 민감하기 때문에, 본 연구에서는 멀티 클래스의 자연 물체 인식에 초점을 두었으며 분류와 특징 추출 시간을 줄이는 것을 포함한다. 훈련과 테스트 과정에서 자연 물체로부터 특징을 추출하기 위해 SIFT와 SURF을 각각 사용하고 그들의 성능을 비교한다. 또한, 클러스터링 알고리즘을 이용하여 다차원의 특징 벡터들로부터 비주얼 코드북을 생성하고 나이브 베이즈 분류기를 이용해 물체를 인식한다.

조명의 변화가 심한 환경에서 자동차 부품 유무 비전검사 방법 (Auto Parts Visual Inspection in Severe Changes in the Lighting Environment)

  • 김기석;박요한;박종섭;조재수
    • 제어로봇시스템학회논문지
    • /
    • 제21권12호
    • /
    • pp.1109-1114
    • /
    • 2015
  • This paper presents an improved learning-based visual inspection method for auto parts inspection in severe lighting changes. Automobile sunroof frames are produced automatically by robots in most production lines. In the sunroof frame manufacturing process, there is a quality problem with some parts such as volts are missed. Instead of manual sampling inspection using some mechanical jig instruments, a learning-based machine vision system was proposed in the previous research[1]. But, in applying the actual sunroof frame production process, the inspection accuracy of the proposed vision system is much lowered because of severe illumination changes. In order to overcome this capricious environment, some selective feature vectors and cascade classifiers are used for each auto parts. And we are able to improve the inspection accuracy through the re-learning concept for the misclassified data. The effectiveness of the proposed visual inspection method is verified through sufficient experiments in a real sunroof production line.