• Title/Summary/Keyword: Visual Depth

Search Result 590, Processing Time 0.036 seconds

Eye Movement-based Visual Discomfort Analysis from Watching Stereoscopic 3D Contents Regarding Brightness and Viewing Distance (눈 움직임을 이용한 밝기와 시청거리에 따른 3D 콘텐츠 피로도 분석)

  • Kim, Yong-Woo;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1723-1737
    • /
    • 2016
  • When watching 3D contents, people often experience various visual discomforts like tiredness, dryness, headaches, and dizziness. Previous researches on visual discomfort analyzed and concluded vergence-accommodation conflict, viewing distance, and brightness changes to be the causes of visual discomfort. Yet it is necessary to systematically analyze the visual discomfort due to the changes in object, background brightness and viewing distance. In this paper, we produce four videos that have four different background brightness and two different viewing distances to solve analyze the visual discomfort from watching 3D contents. We measure and analyze eye-blink and saccadic movement, saccadic latency, Nearest Point of Convergence (NPC), and participant survey for amore accurate result compared to previous researches. Our results show that the eye-blink rate and saccadic latency increase when the background is bright and viewing distance is close while the saccadic movement decreases in the same environment. However, NPC only changes when the background brightness changes. We confirm that the bright background and near viewing distance create greater visual discomfort and decrease depth perception abilities.

An Objective No-Reference Perceptual Quality Assessment Metric based on Temporal Complexity and Disparity for Stereoscopic Video

  • Ha, Kwangsung;Bae, Sung-Ho;Kim, Munchurl
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.255-265
    • /
    • 2013
  • 3DTV is expected to be a promising next-generation broadcasting service. On the other hand, the visual discomfort/fatigue problems caused by viewing 3D videos have become an important issue. This paper proposes a perceptual quality assessment metric for a stereoscopic video (SV-PQAM). To model the SV-PQAM, this paper presents the following features: temporal variance, disparity variation in intra-frames, disparity variation in inter-frames and disparity distribution of frame boundary areas, which affect the human perception of depth and visual discomfort for stereoscopic views. The four features were combined into the SV-PQAM, which then becomes a no-reference stereoscopic video quality perception model, as an objective quality assessment metric. The proposed SV-PQAM does not require a depth map but instead uses the disparity information by a simple estimation. The model parameters were estimated based on linear regression from the mean score opinion values obtained from the subjective perception quality assessments. The experimental results showed that the proposed SV-PQAM exhibits high consistency with subjective perception quality assessment results in terms of the Pearson correlation coefficient value of 0.808, and the prediction performance exhibited good consistency with a zero outlier ratio value.

  • PDF

LiDAR Data Interpolation Algorithm for 3D-2D Motion Estimation (3D-2D 모션 추정을 위한 LiDAR 정보 보간 알고리즘)

  • Jeon, Hyun Ho;Ko, Yun Ho
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.12
    • /
    • pp.1865-1873
    • /
    • 2017
  • The feature-based visual SLAM requires 3D positions for the extracted feature points to perform 3D-2D motion estimation. LiDAR can provide reliable and accurate 3D position information with low computational burden, while stereo camera has the problem of the impossibility of stereo matching in simple texture image region, the inaccuracy in depth value due to error contained in intrinsic and extrinsic camera parameter, and the limited number of depth value restricted by permissible stereo disparity. However, the sparsity of LiDAR data may increase the inaccuracy of motion estimation and can even lead to the result of motion estimation failure. Therefore, in this paper, we propose three interpolation methods which can be applied to interpolate sparse LiDAR data. Simulation results obtained by applying these three methods to a visual odometry algorithm demonstrates that the selective bilinear interpolation shows better performance in the view point of computation speed and accuracy.

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

A study on the corrosion evaluation and lifetime prediction of fire extinguishing pipeline in residential buildings

  • Jeong, Jin-A;Jin, Chung-Kuk;Lee, Jin Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.828-832
    • /
    • 2015
  • This study is conducted for the evaluation of corrosion and lifetime prediction of fire extinguishing pipelines in residential buildings. The fire extinguishing pipeline is made of carbon steel. Twenty-four samples were selected among all the fire extinguishing pipelines in a building; the selection was based on specimenspositions, pipeline diameters, and pipeline thickness. Analysis was conducted by using the results of visual inspection, electrochemical potentiodynamic anodic polarization test, pitting depth measurements, and extreme value statistics with the Gumbel distribution. The maximum pitting depth and remaining life were statistically predicted using extreme value statistics. During visual inspection, pitting corrosion was observed in several samples. In addition, extreme value statistics demonstrated that there were several pipelines that were very sensitive to pitting corrosion. However, the pitting corrosion was not critical in all the pipelines; thus, it was necessary to change only those pipelines that were severely corroded.

Mixed Display Platform to Expand Comfortable Zone of Stereoscopic 3D Viewing

  • Yang, Ungyeon;Kim, Namkyu;Seo, Jinseok;Kim, Ki-Hong;Lee, Gil-Haeng
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.352-355
    • /
    • 2013
  • Common stereoscopic three-dimensional (3D) display has a convergence and accommodation conflict that violates the natural human cognitive process of viewing. This weakness exposes the challenge in supporting fun factors while eliminating safety problems in the 3D viewing experience. Thus, human factors have become a major research topic. In this letter, we propose a 3D stereoscopic visualization platform that can expand the sense of a 3D space by fusing organically mixed stereoscopic displays to provide a continuous feeling of 3D depth. In addition, we present pilot test results to show the possibility of the technical implementation of the proposed platform and note ongoing research issues to be addressed.

Dual Autostereoscopic Display Platform for Multi-user Collaboration with Natural Interaction

  • Kim, Hye-Mi;Lee, Gun-A.;Yang, Ung-Yeon;Kwak, Tae-Jin;Kim, Ki-Hong
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.466-469
    • /
    • 2012
  • In this letter, we propose a dual autostereoscopic display platform employing a natural interaction method, which will be useful for sharing visual data with users. To provide 3D visualization of a model to users who collaborate with each other, a beamsplitter is used with a pair of autostereoscopic displays, providing a visual illusion of a floating 3D image. To interact with the virtual object, we track the user's hands with a depth camera. The gesture recognition technique we use operates without any initialization process, such as specific poses or gestures, and supports several commands to control virtual objects by gesture recognition. Experiment results show that our system performs well in visualizing 3D models in real-time and handling them under unconstrained conditions, such as complicated backgrounds or a user wearing short sleeves.

A Study on the Guidance Signage System of Outpatient in General Hospital using Spatial Configuration Theory - View from G.D.Weisman's Way-finding Influence Factors (공간구조론을 적용한 종합병원 외래부 유도사인 배치 및 평가에 관한 연구 - G.D.Weisman의 길찾기 요소를 중심으로)

  • Kim, Suktae;Paik, Jinkyung
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.21 no.3
    • /
    • pp.25-35
    • /
    • 2015
  • Purpose: Signs that are installed at unnoticeable places or that disconnect before the destination can bring errors of location information delivery. Therefore, this study aims to find out the spatial relation between structure of space and signs in the perspective of visual exposure possibility, operating arrangement and assesment by applying spatial structure theory. Methods: Effectiveness of organization of guidance signs was evaluated after the four way-finding factors(Plan Configuration, Sign System, Perceptual Access, Architectural Difference) that G.D.Weisman suggested were interpreted by spatial structure theory(J-Graph analysis, Space Syntax, Visual Graph Analysis) under the premise that it is closely related to the structure of space. Results: 1) Because the south corridor that connects each department of outpatient division is located in the hierarchy center of the space, and walking density is expected to be high, guidance signs need to be organized at the place with high integration value. 2) The depth to the destination space can be estimated through J-Graph analysis. The depth means a switch of direction, and the guidance signs are needed according to the number. 3) According to visibility graph analysis, visual exposure can be different in the same hierarchy unit space according to the shape of the flat surface. Based on these data, location adjustment of signs is possible, and the improvement effect can be estimated quantitatively. Implications: Spatial structure theory can be utilized to design and evaluate sign systems, and it helps to clearly understand the improvement effect. It is desirable to specify design and estimation of sign systems in the order of J-Graph analysis${\rightarrow}$Space Syntax Theory${\rightarrow}$visibility graph analysis.

Auto-Covariance Analysis for Depth Map Coding

  • Liu, Lei;Zhao, Yao;Lin, Chunyu;Bai, Huihui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.9
    • /
    • pp.3146-3158
    • /
    • 2014
  • Efficient depth map coding is very crucial to the multi-view plus depth (MVD) format of 3-D video representation, as the quality of the synthesized virtual views highly depends on the accuracy of the depth map. Depth map contains smooth area within an object but distinct boundary, and these boundary areas affect the visual quality of synthesized views significantly. In this paper, we characterize the depth map by an auto-covariance analysis to show the locally anisotropic features of depth map. According to the characterization analysis, we propose an efficient depth map coding scheme, in which the directional discrete cosine transforms (DDCT) is adopted to substitute the conventional 2-D DCT to preserve the boundary information and thereby increase the quality of synthesized view. Experimental results show that the proposed scheme achieves better performance than that of conventional DCT with respect to the bitrate savings and rendering quality.

A Clinical Study of Ocular Dimention and Visual Acuity Before and After Cataract Surgery Over Ninety Years Old (90세 이상 초고령 환자들의 백내장 수술전.후 안수치와 시력에 관한 임상연구)

  • Lee, Jung-Mi;Kim, In-Suk;Shin, Jin-Ah
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2010
  • Propose: Due to the rapid growth of medical technologies and the increasing population of older people, we investigated clinical status of ocular dimensions and visual acuity for pre and post cataract surgeries of people over age 90. Methods: From March 2007 to February 2009, we investigated eighty-two eyes of forty-eight patients who had undergone cataract surgeries at an ophthalmic clinic (Ansung, Kyungi-do), investigated maximum corrected vision, axial length, anterior chamber depth and accompanied ocular diseases before and after the surgeries based on the collected data. Results: As patients aged, axial length unchanged but anterior chamber depth decreased over all due to the increase of intraocular lens thickness, and men tended to have a higher degree than women. Seventy-one (86.6%) of eighty-two eyes showed improved corrected vision than before surgeries and forty-three (52.4%) eyes could see more than visual acuity of 0.5. Conclusions: Patients with the systemic disease and accompanied ocular disease showed low vision less than 0.5 after cataract surgery compared to same healthy age peoples. But the others improved correction visual acuity more than 0.5, so the cataract surgery was surely necessary for people over 90 years old and also the presence of ocular disease could have a great influence on correction visual acuity.