• Title/Summary/Keyword: Visual Axis

Search Result 215, Processing Time 0.025 seconds

The Astigmatism Calculation according to the Bevel Position of Decentered Spectacle Lens: Prism Prescription Lens by Eccentricity (편심된 안경렌즈의 산각 위치에 따른 비점수차 계산: 편심에 의한 프리즘 처방)

  • Kim, Sang-Hyun;Seo, Ji-Keun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.11 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • We have studied the astigmatism according to the bevel position and the tilting(pantoscopic) angle of decentered spectacle lens for prism prescription. For prism prescription, generally we make a general spectacle lens into decentered spectacle lens. At this time the bevel position of decentered lens is a important matter, because the difference between optic axis and visual axis occur aberrations. Using the calculation we find that the case that the axis of bevel rotation band passes the front curvature center of (+) lens has a smaller astigmatism than the case that the axis of bevel rotation band passes the rear curvature center of (+) lens and that the case that the axis of bevel rotation band passes the rear curvature center of (-) lens has a smaller astigmatism than the case that the axis of bevel rotation band passes the front curvature center of (-) lens. We find the lens with higher refraction index has a smaller astigmatism.

  • PDF

Design of Fuzzy Inference System for Cameras Inter-Axial Distance Control of Remote Stereoscopic Photographs (원거리 입체촬영용 카메라 축간거리 조절을 위한 퍼지추론 시스템)

  • Byun, Gi-Sig;Oh, Sei-Woong;Kim, Gwan-Hyung;Kim, Min;Kim, Hyun-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.1
    • /
    • pp.41-49
    • /
    • 2015
  • The common way to obtain a stereoscopic image of a subject at a distance is to place two cameras on the parallel axis rather than crossing axis. To find the IAD and maximum focal length, left and right images are obtained by varying the IAD of cameras and the focal length of the camera lens and the depth budget for the obtained images is analyzed through post production. Then, the database for IAD and focal length of the camera lens with the depth range that does not cause visual fatigue and visual discomfort are developed. These data are used to design fuzzy control and deduce the IAD and focal length of the camera lens to shoot a subject at a distance, and the function of the fuzzy control is confirmed through the actual shooting within the range of deduced IAD and focal length of the camera lens.

The Evaluation of Reliability for Exam Distance of Visual Acuity (시력검사거리에 따른 원거리 시력검사 신뢰성 평가)

  • Chun, Young-Yun;Choi, Hyun-Soo;Park, Seong-Jong;Lee, Seok-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.1
    • /
    • pp.17-22
    • /
    • 2014
  • Purpose: We aimed to evaluate reliability of eye exam for visual acuity as a function of distance. Methods: There were 39 patients (78 eyes) who had visual acuity 1.0 or more at 5 meters. We measured refractive power of patients at each distances, 5 meters, 4 meters and 3 meters. Automatic chart (LCD-700, Hyeseong Optic. Co., Korea) used for visual acuity, skiascope (Beta 200, Heine, Germany) and auto refractometer (RK-5, Canon, Japan) used as for objective refraction. Accommodation was examined by minus lens addition methods, and Accommodative lag was examined by grid chart for reading distance. Results: Being compared to 3 meter test, Amount of corrected spherical refractive power decreased by $0.10{\pm}0.38$ D, astigmatism decreased by $0.05{\pm}0.10$ D, and axis of astigmatism rotated toward to temporal by $2.64{\pm}18.75$ degrees for right eyes, by $11.43{\pm}48.55$ degrees for left eyes in case of 5 meter test. Changes of corrected refraction and astigmatism were slightly correlated (r=-0.31, r=-0.29). Conclusions: Because corrected refraction power and amount of astigmatism decreased and axis of astigmatism tends to turn the temporal direction according to exam distance, examination distance of visual acuity should improved as to 5 meters.

A Study on the Space Determinants of the Medieval Plaza (중세광장의 공간결정요소에 관한 연구)

  • Nam, Ho-Hyeon;Min, Sang-Choong
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.83-95
    • /
    • 2008
  • This study was firstly to reflect upon the background of the generation and the urban spatial value and significance of the medieval plaza. The main aim of this study was to extract the spatial determinants which give the great influence on the formation of the medieval plaza and in addition the endogenous rules and aesthetical grounds regarding the respective elements. Especially they could be applied to the design guideline. They are dimension(volume and scale), shape, elevation as the morphological elements and enclosure, proportion, grade difference, spatial sequence and plaza group as the spatial determinants and visual sequence, visual or spatial boundary, approaching axis and perspective effect as the aesthetic and visual elements and function(use), human behaviour as the social-behavioral elements and otherwise, for instance, plaza furniture, ground decoration and vegetation. This study was intended to analyze each elements based on the classical historical literatures and to suggest the planning conditions for composing the ideal plaza referring to the cases and literature review on the medieval plaza and finally is expected to contribute to the plaza design methodology.

  • PDF

Background memory-assisted zero-shot video object segmentation for unmanned aerial and ground vehicles

  • Kimin Yun;Hyung-Il Kim;Kangmin Bae;Jinyoung Moon
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.795-810
    • /
    • 2023
  • Unmanned aerial vehicles (UAV) and ground vehicles (UGV) require advanced video analytics for various tasks, such as moving object detection and segmentation; this has led to increasing demands for these methods. We propose a zero-shot video object segmentation method specifically designed for UAV and UGV applications that focuses on the discovery of moving objects in challenging scenarios. This method employs a background memory model that enables training from sparse annotations along the time axis, utilizing temporal modeling of the background to detect moving objects effectively. The proposed method addresses the limitations of the existing state-of-the-art methods for detecting salient objects within images, regardless of their movements. In particular, our method achieved mean J and F values of 82.7 and 81.2 on the DAVIS'16, respectively. We also conducted extensive ablation studies that highlighted the contributions of various input compositions and combinations of datasets used for training. In future developments, we will integrate the proposed method with additional systems, such as tracking and obstacle avoidance functionalities.

Expectation of Astigmatism by Spherical Equivalent Visual Acuity (등가구면 시력으로부터 난시량의 예측)

  • Kim, Sang-Yoeb;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.2
    • /
    • pp.167-170
    • /
    • 2011
  • Purpose: This study was tried whether expectation of astigmatism from spherical equivalent visual acuity was possible. Methods: For 54 men and women (108 eyes) corrected to emmetropia, average age of 23.3, changes of visual acuity (5m) were measured with an increasing the powers at every ${\pm}$0.25D when the (-) axis of cross cylinder is $180^{\circ}$, $90^{\circ}$, and $45^{\circ}$, respectively. Results: As the power of cross cylinder was increased, visual acuity was decreased. When the powers of cross cylinder were ${\pm}$2.50D ($180^{\circ}$ and $90^{\circ}$) and ${\pm}$2.25D ($45^{\circ}$), visual acuity was 0.05 which is the minimum measurement possible. Conclusions: The diagram on astigmatism dealing with each spherical equivalent visual acuity was able to tabulate.

Adjustment of Stereoscopic Camera's Optical Axis Distance Considering Human Stereopsis Characteristics (인간의 입체시 특성을 고려한 입체 카메라의 광축 간격 조절)

  • Hyung, Sae-Chan;Chun, Kook-Jin;Har, Dong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.5
    • /
    • pp.41-49
    • /
    • 2011
  • Recently, the infrastructure of stereoscopy is growing fast. Though, the stereoscopy producing capacity is insufficient to meet the demand of the market. Because, at the moment most people who produce the stereoscopy are skilled for the two-dimensional images. So the characteristics of the human stereopsis and stereoscopic cameras are not well considered, it occurs many problems to the viewer. According to this, we studied about the optical axis distance adjustment of stereoscopic camera considering size perception in human stereopsis. First, we measured the area of the object in the image which depends on the optical axis distance. Second, based on the output of first experiment, we conducted a survey and figured out that if we keep the optical axis distance between 3.9cm to 130cm, it wouldn't occur any size perception and will be possible to produce high quality stereoscopy.

An Optical Design of Off-axis Four-mirror-anastigmatic Telescope for Remote Sensing

  • Li, Xing Long;Xu, Min;Ren, Xian Dong;Pei, Yun Tian
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.243-246
    • /
    • 2012
  • An off-axis four-mirror-anastigmatic telescope is presented here which is composed of two aspheric surfaces and two spherical surfaces. The entrance pupil diameter is 290 mm and the stop is located at the primary mirror. The effective focal length is 900 mm. The strip field of view for the telescope is $15^{\circ}{\times}0.2^{\circ}$ and if the telescope is launched into an orbit about 400 km altitude, the observed range width will be more than 105 km within a scene without any other auxiliary scanning instrument. The spectral range can be as wide as from visual wave band to infrared wave band in the mirror system. This telescope can be used for environmental monitoring with different detectors whose pixel is adapted to the optical resolution. In this paper, the spectral range is chosen as 3.0 -5.0 ${\mu}m$, and center distance of the pixel is 30 ${\mu}m$. And the image quality is near the diffraction limit.

Discrimination of Lateral Torso Types by Posture for Older Women (노년 여성의 몸통 측면 자세에 따른 체형 판별)

  • Sunmi Park;Hyunsook Han
    • Fashion & Textile Research Journal
    • /
    • v.26 no.1
    • /
    • pp.35-43
    • /
    • 2024
  • This study aimed to objectively classify the lateral torso posture types and functions of older women. We used 3D body scan data of 119 women aged 70-85 years from the 6th SizeKorea project. First, we defined three torso axes to represent the lateral torso posture types: posterior waist-back, back-cervical, and whole torso axes. Next, we asked experts to select one of four lateral torso posture types-stooped, straight, leaning back, and swayback postures-by looking at the lateral photographic data of 119 older women. To identify the axis that best represented each lateral torso posture type, a discriminant analysis was conducted using the angle of each of the three torso axes as an independent variable and an expert's visual classification as a dependent variable. Based on the analysis, the whole torso and backcervical axis angles were selected as variables for judging lateral torso posture types. Subsequently, we developed a classification function to determine which of the four lateral torso posture types of a particular participant was applicable for a new individual. The method developed in this study is significant in that it enables the objective classification of the lateral torso postures types of older women.

Area Separation Histogram Specification Method for Accuracy Improvement of Vision Inspection (Vision 검사의 정확도 향상을 위한 영역 분할 히스토그램 지정 기법)

  • Park, Se-Hyuk;Huh, Kyung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.431-433
    • /
    • 2006
  • The goal of this paper is improvement of vision inspection accuracy by using histogram specification operation. The histogram is composed of horizontal axis of image intensity value and vertical axis of pixel number in image. In appearance vision inspection, the histogram of reference image and input image are different because of minutely lighting distinction. The minutely lighting distinction is main reason of vision inspection error in many cases. Therefore we made an effort for elevation of vision inspection accuracy by making the identical histogram of reference image and input image. As a result of this area separation histogram specification algorithm, we could increase the exactness of vision inspection and prevent system error from physical and spirit condition of human. Also this system has been developed only using PC, CCD Camera and Visual C++ for universal workplace.

  • PDF