• 제목/요약/키워드: Vision recognition

검색결과 1,049건 처리시간 0.026초

관절 기반의 모델을 활용한 강인한 손 영역 추출 (Robust Hand Region Extraction Using a Joint-based Model)

  • 장석우;김설호;김계영
    • 한국산학기술학회논문지
    • /
    • 제20권9호
    • /
    • pp.525-531
    • /
    • 2019
  • 인간과 컴퓨터 사이의 보다 자연스러운 상호적인 인터페이스를 효과적으로 구현하기 위해서 사람의 제스처를 활용하려는 노력이 최근 들어 지속적으로 시도되고 있다. 본 논문에서는 연속적으로 입력되는 3차원의 깊이 영상을 받아들여서 손 모델을 정의하고, 정의된 손 모델을 기반으로 사람의 손 영역을 강인하게 추출하는 알고리즘을 제시한다. 본 논문에서 제시된 알고리즘에서는 먼저 21개의 관절을 사용하여 손 모델을 정의한다. 본 논문에서 정의한 손 모델은 6개의 손바닥 관절을 포함하는 손바닥 모델과 15개의 손가락 관절을 포함하는 손가락 모델로 구성된다. 그런 다음, 입력되는 3차원의 깊이 영상을 적응적으로 이진화함으로써, 배경과 같은 비관심 영역들은 제외하고, 관심 영역인 사람의 손 영역만을 정확하게 추출한다. 실험 결과에서는 제시된 알고리즘이 연속적으로 입력되는 깊이 영상으로부터 배경과 같은 영역들은 제외하고 사람의 손 영역만을 기존의 알고리즘에 비해 약 2.4% 보다 강인하게 검출한다는 것을 보여준다. 본 논문에서 제안된 손 영역 추출 알고리즘은 제스처 인식, 가상현실 구현, 3차원 운동 게임, 수화 인식 등과 같은 컴퓨터 비전 및 영상 처리와 관련된 여러 가지의 실제적인 분야에서 유용하게 활용될 것으로 기대된다.

실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발 (Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods)

  • 서은빈;이승기;여호영;신관준;최경호;임용섭
    • 자동차안전학회지
    • /
    • 제13권2호
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

깊이 영상 카메라로부터 획득된 3D 영상의 품질 향상 방법 (A method of improving the quality of 3D images acquired from RGB-depth camera)

  • 박병서;김동욱;서영호
    • 한국정보통신학회논문지
    • /
    • 제25권5호
    • /
    • pp.637-644
    • /
    • 2021
  • 일반적으로, 컴퓨터 비전, 로보틱스, 증강현실 분야에서 3차원 공간 및 3차원 객체 검출 및 인식기술의 중요성이 대두되고 있다. 특히, 마이크로소프트사의 키넥트(Microsoft Kinect) 방식을 사용하는 영상 센서를 통하여 RGB 영상과 깊이 영상을 실시간 획득하는 것이 가능해짐으로 인하여 객체 검출, 추적 및 인식 연구에 많은 변화를 가져오고 있다. 본 논문에서는 다시점 카메라 시스템 상에서의 깊이 기반(RGB-Depth) 카메라를 통해 획득된 영상을 처리하여 3D 복원 영상의 품질을 향상하는 방법을 제안한다. 본 논문에서는 컬러 영상으로부터 획득한 마스크 적용을 통해 객체 바깥쪽 잡음을 제거하는 방법과 객체 안쪽의 픽셀 간 깊이 정보 차이를 구하는 필터링 연산을 결합하여 적용하는 방법을 제시하였다. 각 실험 결과를 통해 제시한 방법이 효과적으로 잡음을 제거하여 3D 복원 영상의 품질을 향상할 수 있음을 확인하였다.

유사 이미지 분류를 위한 딥 러닝 성능 향상 기법 연구 (Research on Deep Learning Performance Improvement for Similar Image Classification)

  • 임동진;김태홍
    • 한국콘텐츠학회논문지
    • /
    • 제21권8호
    • /
    • pp.1-9
    • /
    • 2021
  • 딥 러닝을 활용한 컴퓨터 비전 연구는 여전히 대규모의 학습 데이터와 컴퓨팅 파워가 필수적이며, 최적의 네트워크 구조를 도출하기 위해 많은 시행착오가 수반된다. 본 연구에서는 네트워크 최적화나 데이터를 보강하는 것과 무관하게 데이터 자체의 특성만을 고려한 CR(Confusion Rate)기반의 유사 이미지 분류 성능 향상 기법을 제안한다. 제안 방법은 유사한 이미지 데이터를 정확히 분류하기 위해 CR을 산출하고 이를 손실 함수의 가중치에 반영함으로서 딥 러닝 모델의 성능을 향상시키는 기법을 제안한다. 제안 방법은 네트워크 최적화 결과와 독립적으로 이미지 분류 성능의 향상을 가져올 수 있으며, 클래스 간의 유사성을 고려해 유사도가 높은 이미지 식별에 적합하다. 제안 방법의 평가결과 HanDB에서는 0.22%, Animal-10N에서는 3.38%의 성능향상을 보였다. 제안한 방법은 다양한 Noisy Labeled 데이터를 활용한 인공지능 연구에 기반이 될 것을 기대한다.

Deep Learning Methods for Recognition of Orchard Crops' Diseases

  • Sabitov, Baratbek;Biibsunova, Saltanat;Kashkaroeva, Altyn;Biibosunov, Bolotbek
    • International Journal of Computer Science & Network Security
    • /
    • 제22권10호
    • /
    • pp.257-261
    • /
    • 2022
  • Diseases of agricultural plants in recent years have spread greatly across the regions of the Kyrgyz Republic and pose a serious threat to the yield of many crops. The consequences of it can greatly affect the food security for an entire country. Due to force majeure, abnormal cases in climatic conditions, the annual incomes of many farmers and agricultural producers can be destroyed locally. Along with this, the rapid detection of plant diseases also remains difficult in many parts of the regions due to the lack of necessary infrastructure. In this case, it is possible to pave the way for the diagnosis of diseases with the help of the latest achievements due to the possibilities of feedback from the farmer - developer in the formation and updating of the database of sick and healthy plants with the help of advances in computer vision, developing on the basis of machine and deep learning. Currently, model training is increasingly used already on publicly available datasets, i.e. it has become popular to build new models already on trained models. The latter is called as transfer training and is developing very quickly. Using a publicly available data set from PlantVillage, which consists of 54,306 or NewPlantVillage with a data volumed with 87,356 images of sick and healthy plant leaves collected under controlled conditions, it is possible to build a deep convolutional neural network to identify 14 types of crops and 26 diseases. At the same time, the trained model can achieve an accuracy of more than 99% on a specially selected test set.

A Study on Sensor-Based Upper Full-Body Motion Tracking on HoloLens

  • Park, Sung-Jun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권4호
    • /
    • pp.39-46
    • /
    • 2021
  • 본 논문에서는 혼합현실에서 산업 현장에서 필요한 동작 인식 방법에 대한 방법을 제안한다. 산업 현장에서는 몸통 움직임부터 팔 동작에 이르기까지 상체 전역의 동작(잡고, 들어올리고, 나르는 작업)이 필요하다. 본 논문에서는 무거운 모션 캡처 장비를 사용하지 않으면서 키넥트와 같은 비전 기반이 아닌 센서와 웨어러블 디바이스로 구성된 방법을 사용하고 있다. 몸통 동작과 어깨 동작은 2개의 IMU 센서를 사용하고 있으며, 팔 동작은 마이오 암 밴드를 사용하였다. 총 4개로부터 들어오는 실시간 데이터를 퓨전하여 상체 전 영역에 대한 모션 인식이 가능하도록 하였다. 실험 방법으로서는 실제 옷에 센서를 부착하였고 동기화 작업을 통해 물체 조작을 하였다. 그 결과 동기화 방법을 사용한 방식은 큰 동작과 작은 동작에 있어서 오류가 없었다. 마지막으로 성능 평가를 통해 홀로렌즈 상에서 한손 조작일 경우 평균적으로 50 프레임, 양 손 조작일 경우 60 프레임을 보이는 결과를 나타 내였다.

블록 HOG 군집화 기반의 1-D 바코드 크로스라인 결정 (Determination of Bar Code Cross-line Based on Block HOG Clustering)

  • 김동욱
    • 한국정보통신학회논문지
    • /
    • 제26권7호
    • /
    • pp.996-1003
    • /
    • 2022
  • 본 논문에서는 비전 기반의 1-D 바코드 검출을 위한 스캔 라인 및 범위 결정을 위한 새로운 방법을 제시한다. 블록 HOG(histogram of gradient)를 바탕으로 DBSCAN 군집화 방법을 적용하여 유효한 바코드 대표점 및 방향을 검출하고 이를 바탕으로 스캔 라인 및 바코드 크로스라인을 결정하는 방법에 관한 연구이다. 본 논문에서는 얻어진 스캔라인을 바탕으로 바코드의 크로스라인 범위를 결정하기 위해 최소 및 최대탐색 기법이 적용되었다. 이것은 바코드의 크기에 무관하게 적용될 수 있다. 제안된 기법은 바코드의 일부 영역만 검출해도 바코드 인식이 가능하며, 또한 바코드 영역 검출 후 코드를 읽기 위해 회전을 필요로 하지 않는다. 또한, 다양한 크기의 바코드 검출이 가능하다. 본 논문의 제안된 기법에 대한 성능을 평가를 위해 다양한 실험결과를 제시하였다.

실시간 온라인 수업 및 시험 태도 데이터 세트 설계 및 구현 (Real-time Online Study and Exam Attitude Dataset Design and Implementation)

  • 김준식;이찬휘;송혁;권순철
    • 방송공학회논문지
    • /
    • 제27권1호
    • /
    • pp.124-132
    • /
    • 2022
  • 최근 코로나바이러스감염증-19(COVID-19)로 인해 온라인 원격 수업과 비대면 시험으로 인해 수업 태도 및 시험 부정행위에 대한 관리가 어려움을 겪고 있다. 따라서 온라인으로 학생들의 행동을 자동으로 인식하고 검출하는 시스템이 필요하다. 사람의 행동을 인식하는 행동 인식의 경우 컴퓨터 비전에서 많이 연구되는 기술 중 하나이다. 이러한 시스템을 개발하기 위해서는 온라인 수업 및 시험에서 주요 정보가 될 수 있는 사람의 팔 움직임 정보와 주변 물체에 대한 정보를 포함하는 데이터가 필요하다. 기존 데이터 세트는 여러 분야에 대해 분류를 하거나 일상생활 행동으로 구성되어 있어 본 시스템에 적용시키기에 어려움이 있다. 본 논문에서는 실시간으로 진행되는 온라인 시험 및 수업에서 태도를 분류할 수 있는 데이터 세트를 제시한다. 또한, 기존의 행동 인식 데이터 세트와의 비교를 통해 제안된 데이터 세트가 올바르게 구성되었는지를 보여준다.

YOLOv8 알고리즘 기반의 주행 가능한 도로 영역 인식과 실시간 추적 기법에 관한 연구 (Research on Drivable Road Area Recognition and Real-Time Tracking Techniques Based on YOLOv8 Algorithm)

  • 서정희
    • 한국전자통신학회논문지
    • /
    • 제19권3호
    • /
    • pp.563-570
    • /
    • 2024
  • 본 논문은 운전자의 운행 보조 역할로 주행 가능한 차선 영역을 인식하고 추적하는 방법을 제안한다. 주요 주제는 차량 내부의 앞 유리 중앙에 설치된 카메라를 통해 실시간으로 획득한 영상을 기반으로 컴퓨터 비전과 딥 러닝 기술을 활용하여 주행 가능한 도로 영역을 예측하는 심층 기반 네트워크를 설계한다. 본 연구는 YOLOv8 알고리즘을 이용하여 카메라에서 직접 획득한 데이터로 훈련한 새로운 모델을 개발하는 것을 목표한다. 실제 도로에서 자신의 차량의 정확한 위치를 실제 영상과 일치하게 시각화하여 주행 가능한 차선 영역을 표시 및 추적함으로써 운전자 운행의 보조하는 역할을 기대한다. 실험 결과, 대부분 주행 가능한 도로 영역의 추적이 가능했으나 밤에 비가 심하게 오는 경우와 같은 악천후에서 차선이 정확하게 인식되지 않는 경우가 발생하여 이를 해결하기 위한 모델의 성능 개선이 필요하다.

수어 번역을 위한 3차원 컨볼루션 비전 트랜스포머 (Three-Dimensional Convolutional Vision Transformer for Sign Language Translation)

  • 성호렬;조현중
    • 정보처리학회 논문지
    • /
    • 제13권3호
    • /
    • pp.140-147
    • /
    • 2024
  • 한국에서 청각장애인은 지체장애인에 이어 두 번째로 많은 등록 장애인 그룹이다. 하지만 수어 기계 번역은 시장 성장성이 작고, 엄밀하게 주석처리가 된 데이터 세트가 부족해 발전 속도가 더디다. 한편, 최근 컴퓨터 비전과 패턴 인식 분야에서 트랜스포머를 사용한 모델이 많이 제안되고 있는데, 트랜스포머를 이용한 모델은 동작 인식, 비디오 분류 등의 분야에서 높은 성능을 보여오고 있다. 이에 따라 수어 기계 번역 분야에서도 트랜스포머를 도입하여 성능을 개선하려는 시도들이 제안되고 있다. 본 논문에서는 수어 번역을 위한 인식 부분을 트랜스포머와 3D-CNN을 융합한 3D-CvT를 제안한다. 또, PHOENIX-Wether-2014T [1]를 이용한 실험을 통해 제안 모델은 기존 모델보다 적은 연산량으로도 비슷한 번역 성능을 보이는 효율적인 모델임을 실험적으로 증명하였다.