• 제목/요약/키워드: Vision processing

검색결과 1,558건 처리시간 0.03초

최소화된 계측 및 신호 처리 시스템을 이용한 상시진동 케이블의 효율적인 장력 추정에 관한 연구 (A Study on the Efficient Tension Estimation of Cables under Ambient Vibration using Minimized Measurement and Signal Processing System)

  • 이형진
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.594-603
    • /
    • 2018
  • 최근 계측 기술의 발달에 따라 종래의 복잡하고 시간 소모적인 현장 계측분석 작업을 단순하고 편리하게 만드는 작업이 가능해지고 있다. 이런 배경에서 이 논문에서는 최소화된 계측 및 신호처리를 통해 상시진동 케이블의 장력을 추정하는 문제에 대해 연구하였다. 최소화 계측 방법으로는 저가 영상장비로 촬영된 동영상만을 이용하는 영상 변위 계측을 구상하였다. 또한 이로 인한 유효 주파수 대역 부족 문제의 해결을 위해 미러 주파수를 이용한 고유진동수 추정 방법을 제시하였다. 더불어 현장 사용 성능과 관련한 상시진동 문제를 처리하기 위해 신호처리 및 고유진동수 추정법으로 FDD 방법이 채택되었다. 제안된 최소화 계측 시스템과 미러 주파수 개념의 특성 및 FDD 방법의 적용성을 보기 위하여 사장교 모형을 이용한 실험적 연구가 수행되었다. 실험 결과는 상시진동을 위한 FDD 방법이 최소화 시스템을 이용한 고유 진동수 판별에서도 효과적으로 잘 작동됨을 보여 주었다. 또한 미러 주파수 개념은 저속촬영에 따라 왜곡된 신호에서도 고주파수 영역에 있는 고유진동수 추정이 가능함을 보여 최소화 시스템의 한계돌파에 효과적임을 보여 주었다. 결론적으로 실험결과는 제안된 최소화 계측 및 신호처리 시스템이 상시진동 케이블 장력 추정에 효과적인 방법이 될 수 있음을 보여주었다.

온라인 드론방제 관리 정보 플랫폼 개발 (Development of online drone control management information platform)

  • 임진택;이상범
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.193-198
    • /
    • 2021
  • 최근 4차 산업에 대한 관심으로 농업 분야의 벼농사에서 농민의 방제에 대한 요구수준이 증가하고 농업용 방제 드론의 관심과 활용이 증가하고 있다. 따라서 고농도의 농약을 살포하는 농업용 방제 드론 제품의 다양화와 드론 국가자격증 취득으로 인한 방제사의 증가로 인하여 드론 산업 분야에서 농업 분야가 급성장하고 있다. 세부 사업으로 농약 관리, 방제사 관리, 정밀살포, 방제 작업 물량 분류, 정산, 토양관리, 병충해 예찰 및 감시 등으로 방대한 빅데이터를 구축하고 데이터를 처리하기 위한 효과적인 플랫폼을 요구하고 있다. 그러나 데이터 분석알고리즘, 영상 분석 알고리즘, 생육 관리 알고리즘, AI 알고리즘 등 이를 통합하고 빅데이터를 처리하기 위한 모델과 프로그램 개발에 대한 국내외 연구는 미흡한 실정이다. 본 논문에서는 농업 분야에서의 관리자와 농민 요구도를 만족하고 드론을 활용한 농업용 드론방제 프로세서를 기반으로 정밀 AI 방제를 실현화시키기 위하여 온라인 드론 방제 관리 정보 플랫폼을 제안하고 실증 실험을 통하여 종합 관리 시스템 개발의 토대를 제시하였다.

수색용 드론 이미지를 활용한 임무수행 데이터 생성에 관한 연구 (A study on the creation of mission performance data using search drone images)

  • 이상범;임진택
    • 융합신호처리학회논문지
    • /
    • 제22권4호
    • /
    • pp.179-184
    • /
    • 2021
  • 최근 4차 산업의 발달로 공공분야에서 드론을 활용하여 다양한 목적으로 수색 및 실시간 모니터링에 대한 관심이 높아지고 있다. 실종자 수색, 치안, 해안 순찰 및 감시, 과속 단속, 고속도로 및 도심지역 교통상황 모니터링, 화재 및 산불감시, 저수지 불법 낚시 감시 모니터링, 집회 현장 상황에서 다양한 수색 및 감시 임무 목적을 가지고 활용되고 연구되고 있다. 그러나 경찰, 소방, 군에서는 드론의 하드웨어적인 부분에 집중되고 있어 고성능의 해상도 카메라, 열화상 카메라에 집중되고 카메라로 수집된 데이터의 실시간 모니터링을 위해 원활한 통신시스템 및 특수 임무에 부합하는 분석 프로그램 관련 연구가 매우 부족하다. 따라서 본 논문에서는 수색의 임무를 목적으로 하는 드론의 효용성을 높이기 위해 드론에서 취득되는 이미지를 기반으로 수색 임무에 적합한 이미지 데이터 생성하고자 한다. 이를 통해 수색의 정밀도를 높이는 이미지 분석 기법을 제안하고 실제 현장 사례 및 실험을 통하여 관련 정책개선 및 플랫폼 구축을 위한 이미지 분석 기술을 제시하고자 한다.

깊이 이미지를 이용한 타이어 표면 결함 검출 방법에 관한 연구 (A Study on Tire Surface Defect Detection Method Using Depth Image)

  • 김현석;고동범;이원곡;배유석
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권5호
    • /
    • pp.211-220
    • /
    • 2022
  • 최근 4차 산업혁명으로 촉발된 스마트공장에 관한 연구가 활발히 진행되고 있다. 이에 따라 제조업에서는 강건한 성능의 딥러닝 기술을 바탕으로 생산성 향상과 품질 향상을 위해 다양한 연구를 진행 중이다. 본 논문은 타이어 제조공정의 육안검사 단계에서 타이어 표면 결함을 검출하는 방법에 관한 연구로서 3D 카메라를 통해 취득한 깊이 이미지를 이용한 타이어 표면 결함 검출 방법을 소개한다. 본 연구에서 다루는 타이어 표면 깊이 이미지는 타이어 표면의 얕은 깊이로 인해 발생되는 낮은 깊이 대비와 데이터 취득 환경으로 인해 기준 깊이 값의 차이가 발생하는 문제가 있다. 그리고 제조업의 특성상 검출 성능과 함께 실시간으로 처리될 수 있는 성능을 지닌 알고리즘이 요구된다. 따라서, 본 논문에서는 타이어 표면 결함 검출 알고리즘이 복잡한 알고리즘 파이프라인으로 구성되지 않도록 상대적으로 단순한 방법들을 통해 깊이 이미지를 정규화하는 방법을 연구하였으며 검출 성능과 속도를 모두 만족할 수 있는 딥러닝 방법인 YOLO V3를 이용하여 일반적인 정규화 방법과 본 논문에서 제안하는 정규화 방법의 비교 실험을 진행하였다. 실험의 결과로 본 논문에서 제안한 정규화 방법으로 mAP 0.5 기준 약 7% 성능이 향상된 것을 확인하였으며 본 논문에서 제시한 방법이 효과적임을 보였다.

호수 환경의 녹조 확산 방지를 위한 드론 적용 방안에 관한 연구 (A Study on the Application of Drone to Prevent the Spread of Green Tides in Lake Environment)

  • 임진택;이우람;이상범
    • 융합신호처리학회논문지
    • /
    • 제24권1호
    • /
    • pp.27-33
    • /
    • 2023
  • 최근 기후변화로 인한 물 부족 현상이 발생하고 있으며 저수지의 녹조 발생으로 농업용수의 물 관리 필요성이 증대되고 있다. 기존의 녹조 방지는 많은 사람이 현장에 투입돼 운영되고 보트를 통한 이동으로 최적의 살포 시간을 놓치고 있다. 이를 해결하기 위해서는 오염을 사전에 차단하고 시간 내 이동하여 균일하게 복합 미생물을 균일하게 살포하는 기술이 필요하다. 방제 드론은 농약 살포에 활용되고 있으며 방제 드론을 활용하여 녹조 방지 업무에 적용이 가능하다. 본 논문에서는 해양 방제 시스템 구축을 위한 기초연구로 저수지 환경 적용을 위해 수행되었으며, 그 결과물의 하나로 방제 드론에 사용 가능한 핵심기술인 드론 전용 노즐의 특성을 산출하였다. 특히, 기존의 농업용 방제 드론이 제시된 살포 간격 내에서 농도가 불균일하다는 단점이 있음을 파악하였고, 이를 보완하기 위해 노즐 위치선정 및 노즐 살포 균일도를 산출하였다. 실험 결과를 바탕으로 저수지 환경의 녹조 감시 시스템 구축의 핵심 알고리즘을 개발하고 추후 해양 방제 업무 적용에 활용이 가능하도록 정밀 방제 기술을 제안한다.

미러 방식의 실시간 동적 프로젝션 매핑 설계 및 동적 사물 검출 시스템 연구 (The Mirror-based real-time dynamic projection mapping design and dynamic object detection system research)

  • 안서영;서범석;홍성대
    • 사물인터넷융복합논문지
    • /
    • 제10권2호
    • /
    • pp.85-91
    • /
    • 2024
  • 본 논문에서는 테마파크, 메가 이벤트, 전시공연에 시공간을 넘어서 디지털 캔버스로 활용하고 있는 프로젝션 매핑에 대해서 연구하였다. 기존 고정된 대상에 사용하던 프로젝션 기술은 활용도에 있어서 움직이는 대상에 맵핑 하기 힘들다는 한계점이 있기 때문에 움직이는 피사체를 추적하여 매핑할 수 있는 기술과 동적으로 움직이는 대상을 기반으로 실시간 동적 프로젝션 매핑 시스템을 개발하여 공연, 전시, 테마파크 등 다양한 시장 대응이 가능하도록 관련 연구가 시급한 실정이다. 본문에서는 실시간 사물에 해당하는 요소를 추적할 수 있는 하드웨어 개발과 초고속 영상처리를 하여 딜레이 현상이 없는 시스템을 제시하고자 한다. 구체적으로 실시간 오브제 영상분석 및 프로젝션 포커싱 제어부 개발, 실시간 오브제 추적 시스템을 위한 통합 운영 시스템, 프로젝션 매핑을 위한 영상처리 라이브러리 개발을 구현한다. 본 연구는 최근 실시간 비전머신 기반의 검출 기술을 활용한 기술 집약적인 산업임과 동시에 첨단의 과학기술이 융합되어 연출되는 산업으로 활용도가 다양할 것으로 기대된다.

드론 공간정보기술을 활용한 수질 모델링 (Water Quality Modeling using Drone and Spatial Information Technology)

  • 김영주
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.236-241
    • /
    • 2023
  • 우리나라에서도 하천, 호소 및 하구에서의 수질 문제가 심각하게 대두되고 있다. 담수호 및 하천 유역의 부영양화를 극복하기 위해서는 수질의 체계적인 관리가 필요하며 담수호 및 유역의 수질관리를 위해서는 유역에 적합한 수문 모델과 하천 및 호소 등 수질 모델을 적용하여 이러한 모델의 예측 결과를 바탕으로 수질오염 개선 대책을 제시하여야 한다. 유역에서의 적절한 수질오염 개선 대책을 적용하기 위해서는 정확한 오염원의 파악과 오염부하량을 예측하고 제시해야 한다. GIS를 기반으로 오염원 데이터베이스와 수문 및 수질 예측 모델의 연계가 공간상의 위치를 기반으로 통합적으로 이루어짐으로써 수질 모델링 과정을 종합적으로 포함하여 유역 수질을 개선할 수 있는 체계적 지원이 가능할 것이다. 본 논문에서는 담수호 및 하천 유역에서 수질오염을 정확하게 예측하기 위해서 GIS 기반의 공간정보를 활용하여 수질 모델 시스템을 구축하여 향후 담수호 유역의 종합적인 수질관리 방법을 제시하고 수질 모델링을 통해 오염원의 체계적인 관리와 자동화된 공간정보를 활용하여 수문 및 수질 모델을 용이하고 효율적으로 운용하고자 본 연구를 수행하였다.

계층적 군집화 기반 Re-ID를 활용한 객체별 행동 및 표정 검출용 영상 분석 시스템 (Video Analysis System for Action and Emotion Detection by Object with Hierarchical Clustering based Re-ID)

  • 이상현;양성훈;오승진;강진범
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.89-106
    • /
    • 2022
  • 최근 영상 데이터의 급증으로 이를 효과적으로 처리하기 위해 객체 탐지 및 추적, 행동 인식, 표정 인식, 재식별(Re-ID)과 같은 다양한 컴퓨터비전 기술에 대한 수요도 급증했다. 그러나 객체 탐지 및 추적 기술은 객체의 영상 촬영 장소 이탈과 재등장, 오클루전(Occlusion) 등과 같이 성능을 저하시키는 많은 어려움을 안고 있다. 이에 따라 객체 탐지 및 추적 모델을 근간으로 하는 행동 및 표정 인식 모델 또한 객체별 데이터 추출에 난항을 겪는다. 또한 다양한 모델을 활용한 딥러닝 아키텍처는 병목과 최적화 부족으로 성능 저하를 겪는다. 본 연구에서는 YOLOv5기반 DeepSORT 객체추적 모델, SlowFast 기반 행동 인식 모델, Torchreid 기반 재식별 모델, 그리고 AWS Rekognition의 표정 인식 모델을 활용한 영상 분석 시스템에 단일 연결 계층적 군집화(Single-linkage Hierarchical Clustering)를 활용한 재식별(Re-ID) 기법과 GPU의 메모리 스루풋(Throughput)을 극대화하는 처리 기법을 적용한 행동 및 표정 검출용 영상 분석 시스템을 제안한다. 본 연구에서 제안한 시스템은 간단한 메트릭을 사용하는 재식별 모델의 성능보다 높은 정확도와 실시간에 가까운 처리 성능을 가지며, 객체의 영상 촬영 장소 이탈과 재등장, 오클루전 등에 의한 추적 실패를 방지하고 영상 내 객체별 행동 및 표정 인식 결과를 동일 객체에 지속적으로 연동하여 영상을 효율적으로 분석할 수 있다.

오이수확용 로봇개발을 위한 재배방식이 생육 및 수량에 미치는 영향 (Effects of Cultivation Method on the Growth and Yield of a Cucumber for Development of a Robotic Harvester)

  • 이대원;민병로;김현태;임기택;김웅;권영삼;남윤일;최재웅;성시흥
    • 생물환경조절학회지
    • /
    • 제7권3호
    • /
    • pp.226-236
    • /
    • 1998
  • 본 연구는 오이수확기 개발을 위하여 오이의 인식에 장해가 되는 잎의 부분적인 제거 및 기계화를 위한 재배방식이 오이의 생육과 수량에 미치는 영향을 구명하고자 하였다. 세가지 형태의 잎제거 방식과 두가지 형태의 정식간격, 그리고 3가지 형태의 줄기 유인방식을 정하여 오이의 전장, 수량과 1등급비율을 측정한 결과를 요약하면 다음과 같다. 1. 잎제거 형태에 따른 오이의 생육을 관찰하기 위해서 전장을 측정한 결과, 관행적인 제거방식의 경우, 일정 실험기간동안 평균 52.2cm 생장하였다. 또한, 2일마다 하부잎 하나를 제거한 경우에는 평균 51.5cm 생장하였다. 수확한 오이가 있는 경우 하부의 잎을 모두 제거한 경우에는 평균 51cm가 생장한 것으로 보아 평균 3% 이내의 차이를 보였다. 또한, 24cm, 30cm의 주간간격에 따라서는 각각 평균 50.8cm, 51.8cm의 약 2%정도 생장에 차이를 보였다. 따라서 부분적인 잎제거는 오이의 생장에 큰 영향을 미치지 않는 것으로 판단되었다. 2. 판별변수의 하나인 수량과 1등급비율을 잎제거 형태에 따라 비교해 보면, 관행적인 제거방식의 경우, 평균 한주당 2.6개/일 를 수확하였다. 1등급 비율은 56.7%로 나타났다. 또한 2일마다 하부잎 하나를 제거한 경우에는 평균 한주당 2.47개/일의 수확이 있었으며, 1등급 비율은 53.1%로 나타났다. 마지막으로 수확한 오이가 있는 경우 하부의 잎을 모두 제거한 경우에는 한주당 평균 2.48개/일 를 수확하였으며, 1등급 비율이 56.3%로 나타났다. 따라서 수량의 차이는 약 6%정도이고 1등급 비율도 10% 이내로 큰 영향은 없는 것으로 판단되었다. 3. 오이의 주간간격에 따른 수량과 1등급비율을 측정한 결과, 24cm의 경우 한주당 2.3개/일의 평균수확이 되었다. 1등급비율은 59.8%, 30cm의 경우 한주당 평균 2.5개/일을 수확하였으며, 1등급은 57.2%로 나타났다. 따라서 수량은 24cm의 경우가 약간 적었지만 1등급의 비율로 환산하면 크게 차이가 없는 것을 알 수 있다. 따라서 농가전체 수량을 기준으로 한다면 24cm가 유리하다고 판단되었다. 4. 줄기유인 형식에 따라 수량과 1등급비율을 살펴보면, 관행적인 방법은 평균 한주당 2.9개/일, 42.8%, 직립후횡유인은 평균 한주당 2.2개/일, 61.3%, 직립후 가로줄유인은 평균 한주당 2.2개/일, 54.1%로 나타났다. 따라서 수량과 1등급을 동시에 고려하면, 큰 차이는 없지만, 직립후 횡유인방법과 직립후 가로줄유인의 경우는 오이가 지면에서 상대적으로 상부에 위치하므로 영상인식과 기계화 측면에서 유리할 것으로 생각되었다.

  • PDF

손 동작 인식을 통한 인간 - 컴퓨터 인터페이스용 저가형 비주얼 모션 데이터 글러브 (Inexpensive Visual Motion Data Glove for Human-Computer Interface Via Hand Gesture Recognition)

  • 한영모
    • 정보처리학회논문지B
    • /
    • 제16B권5호
    • /
    • pp.341-346
    • /
    • 2009
  • 모션 데이터 글러브는 손의 움직임을 측정하여 컴퓨터에 입력하는 대표적인 인간과 컴퓨터간의 인터페이스 도구로서, 홈 오토에이션, 가상 현실, biometrics, 모션 캡쳐 등의 컴퓨터 신기술에 사용되는 필수 장비이다. 본 논문에서는 대중화를 위하여, 별도의 특수 장비 없이 사용 가능한 저가형 비주얼 모션 데이터 글러브를 개발하고자 한다. 본 방식의 특징은 기존의 모션 데이터 글러브에 사용되었던, 고가의 모션 센싱 섬유를 사용하지 않음으로써, 저가형으로 개발이 가능하다는 것이다. 따라서 제작이 용이하고 대중화에 크게 기여할 수 있다는 장점을 가진다. 본 방식에서는 모션 센싱 섬유를 사용하는 기계적인 방식대신 광학적 모션 캡쳐 기술을 개량한 비주얼 방식을 채택한다. 기존의 비주얼 방식에 비해 본 방식은 다음과 같은 장점과 독창성을 가진다. 첫째, 기존의 비주얼 방식은 가려짐 현상을 제거하고 3차원 자세 복원을 위해 많은 수의 카메라와 장비를 사용하는 데 비해, 본 방식은 모노비전 방식을 채택하여 장비가 간소하고 저가형 개발이 가능하다. 둘째, 기존의 모노비전방삭은 가려짐 현상에 취약하여 영상에서 가려진 부분은 3차원 자세 복원이 어려웠다. 하지만 본 논문은 독창적으로 설계된 막대 모양의 지시자를 사용하여, 영상에서 가려진 부분도 3차원 자세 복원이 가능하다. 셋째, 기존의 모노 비전 방식은 비선형 수치해석 형태의 영상 해석 알고리즘을 사용하는 경우가 많아서 초기화나 계산시간 면에서 불편하였다. 하지만, 본 논문에서는 독창적인 공식화 방법을 사용하여 닫힌 형태의 영상해석 알고리즘을 도출함으로써 이와 같은 불편을 개선하였다. 넷째, 기존의 닫힌 형태의 알고리즘은 공식화 과정에서 근사화 방법을 도입하는 경우가 많아서 정확도가 떨어지고 특이점에 의한 응용분야에 제한이 있었다. 하지만 본 방식은 오일러 각과 같은 국부적인 매개화나 근사화 등을 사용하는 대신 지수형태의 트위스트좌표계를 사용하는 독창적인 공식화 방법을 사용하여, 공식화 단계에서의 근사화 방법 없이 닫힌 형태의 알고리즘을 도출함으로써 이 문제들을 개선하였다.