• Title/Summary/Keyword: Vision perspective

Search Result 229, Processing Time 0.026 seconds

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Vision-Based Collision-Free Formation Control of Multi-UGVs using a Camera on UAV (무인비행로봇에 장착된 카메라를 이용한 다중 무인지상로봇의 충돌 없는 대형 제어기법)

  • Choi, Francis Byonghwa;Ha, Changsu;Lee, Dongjun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In this paper, we present a framework for collision avoidance of UGVs by vision-based control. On the image plane which is created by perspective camera rigidly attached to UAV hovering stationarily, image features of UGVs are to be controlled by our control framework so that they proceed to desired locations while avoiding collision. UGVs are assumed as unicycle wheeled mobile robots with nonholonomic constraint and they follow the image feature's movement on the ground plane with low-level controller. We used potential function method to guarantee collision prevention, and showed its stability. Simulation results are presented to validate capability and stability of the proposed framework.

Development of Vision Based Steering System for Unmanned Vehicle Using Robust Control

  • Jeong, Seung-Gweon;Lee, Chun-Han;Park, Gun-Hong;Shin, Taek-Young;Kim, Ji-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1700-1705
    • /
    • 2003
  • In this paper, the automatic steering system for unmanned vehicle was developed. The vision system is used for the lane detection system. This paper defines two modes for detecting lanes on a road. First is searching mode and the other is recognition mode. We use inverse perspective transform and a linear approximation filter for accurate lane detections. The PD control theory is used for the design of the controller to compare with $H_{\infty}$ control theory. The $H_{\infty}$ control theory is used for the design of the controller to reduce the disturbance. The performance of the PD controller and $H_{\infty}$ controller is compared in simulations and tests. The PD controller is easy to tune in the test site. The $H_{\infty}$ controller is robust for the disturbances in the test results.

  • PDF

Pattern Elimination Method Based on Perspective Transform for Defect Detection of TFT-LCD (TFT-LCD의 결함 검출을 위한 원근 변환 기반의 패턴 제거 방법)

  • Lee, Joon-Jae;Lee, Kwang-Ho;Chung, Chang-Do;Park, Kil-Houm;Park, Yun-Beom;Lee, Byung-Gook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.784-793
    • /
    • 2012
  • Defects of TFT-LCD is detected by thresholding the difference image between the input image and template one because LCD panel has its inherent patterns. However, the pitch corresponding to pattern period is gradually changed according to the distance from the center of camera due to geometric distortion of camera characteristics. This paper presents a method to detect defects through comparing the pitch area with neighbor pitch areas where the perspective transform is performed with the extracted features to correct the distortion. The experimental results show that the performance of the proposed method is very effective for real data.

Mixing Collaborative and Hybrid Vision Devices for Robotic Applications (로봇 응용을 위한 협력 및 결합 비전 시스템)

  • Bazin, Jean-Charles;Kim, Sung-Heum;Choi, Dong-Geol;Lee, Joon-Young;Kweon, In-So
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.210-219
    • /
    • 2011
  • This paper studies how to combine devices such as monocular/stereo cameras, motors for panning/tilting, fisheye lens and convex mirrors, in order to solve vision-based robotic problems. To overcome the well-known trade-offs between optical properties, we present two mixed versions of the new systems. The first system is the robot photographer with a conventional pan/tilt perspective camera and fisheye lens. The second system is the omnidirectional detector for a complete 360-degree field-of-view surveillance system. We build an original device that combines a stereo-catadioptric camera and a pan/tilt stereo-perspective camera, and also apply it in the real environment. Compared to the previous systems, we show benefits of two proposed systems in aspects of maintaining both high-speed and high resolution with collaborative moving cameras and having enormous search space with hybrid configuration. The experimental results are provided to show the effectiveness of the mixing collaborative and hybrid systems.

The Market Orientation from Dual Perspectives: Customers and Managers Perceptions in Tunisian Banks

  • Najjar, Faouzi;Missaoui, Yosra
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.31-42
    • /
    • 2021
  • Several studies have been conducted on market orientation over the last three decades. However, the majority of previous research focused exclusively on an internal vision that conceives the market orientation from an organizational perspective, considering the market orientation as a strictly perceived culture or behavior by company's staff (managers and employees) .This study aims to emphasize the importance of analyzing the market orientation from a dual perspective by investigating simultaneously the perceptions of customers and those of managers. It examines the perceptual gap or perceptual congruence of market orientation between customers and managers. A survey is conducted with Tunisian bank managers and B to B customers to measure their market orientation perception. The results should reveal level of manager's market orientation in Tunisian banks compared to customers' perceptions. The perception gaps of market orientation between managers and customers named congruence is highlighted and categorized. This study provides some contributions to fill the gap emerging from the one-sidedness of market orientation evaluation and gives a dyadic vision of market orientation that helps managers in their continuous learning about markets and sensing customers' needs and expectations. Market orientation level between the two groups is evaluated to give some managerial recommendations.

Policy Advices for the Success of Digital Platform Government in South Korea

  • Zhan, Sen;Chung, Choong-Sik
    • Journal of Platform Technology
    • /
    • v.10 no.3
    • /
    • pp.11-20
    • /
    • 2022
  • South Korea is now recognized as a world leader in the field of digital government thanks to a president who had insight in the field of e-Government more than 20 years ago. Today, many countries around the world are establishing various strategies to cope with the great digital transformation beyond the industrial society and the information society. The Korean government is also establishing and promoting digital government policies to respond to such a global digital transformation. In South Korea, the digital platform government policy began in 2022. Therefore, it is an early stage of policy formation, and many details are not well known yet. Recently, the Korean government announced the vision, three goals, and five strategies for realizing a digital platform government. And specific digital platform government projects that can be implemented are selected. In order to successfully implement a digital platform government, the following three policies should be prioritized. First, the digital platform government should be approached from the perspective of total government innovation, not industry revival. Second, the political perspective should be excluded from ICT policy. Third, the vision and strategy of the digital platform government should be established and clearly presented to the public. And based on this, strong governance should be formed and strongly promoted centered on the leadership of the president.

Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation (비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.9
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

Application of Visual Decision Making Process in the Development of Business Process Reengineering Vision and Implementation Plan

  • 김재경;성태경
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.14 no.2
    • /
    • pp.185-185
    • /
    • 1989
  • Business process reengineering(BPR) aims at a radical redesign of our business processes in order to achieve dramatic improvements in their performance. However, the fact that many BPR projects have failed hesitates the companies who have started to use BPR or who are planning to do so. Implementing a radical plan from a cross-functional perspective needs a more careful consideration of process vision, preventive measures and contingency plan. Our research suggests to use a visual decision making process (VDMP) in the development of a process vision and implementation plan. A BPR project of Carlson School of Management (CSOM) at the University of Minnesota is illustrated to show our suggested methodology.

A Crosswalk and Stop Line Recognition System for Autonomous Vehicles (무인 자율 주행 자동차를 위한 횡단보도 및 정지선 인식 시스템)

  • Park, Tae-Jun;Cho, Tai-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.2
    • /
    • pp.154-160
    • /
    • 2012
  • Recently, development of technologies for autonomous vehicles has been actively carried out. This paper proposes a computer vision system to recognize lanes, crosswalks, and stop lines for autonomous vehicles. This vision system first recognizes lanes required for autonomous driving using the RANSAC algorithm and the Kalman filter, and changes the viewpoint from the perspective-angle view of the street to the top-view using the fact that the lanes are parallel. Then in the reconstructed top-view image this system recognizes a crosswalk based on its geometrical characteristics and searches for a stop line within a region of interest in front of the recognized crosswalk. Experimental results show excellent performance of the proposed vision system in recognizing lanes, crosswalks, and stop lines.