• 제목/요약/키워드: Vision navigation

검색결과 314건 처리시간 0.026초

교통 표지판의 3차원 추적 경로를 이용한 자동차의 주행 차로 추정 (Lane-Level Positioning based on 3D Tracking Path of Traffic Signs)

  • 박순용;김성주
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.172-182
    • /
    • 2016
  • Lane-level vehicle positioning is an important task for enhancing the accuracy of in-vehicle navigation systems and the safety of autonomous vehicles. GPS (Global Positioning System) and DGPS (Differential GPS) are generally used in navigation service systems, which however only provide an accuracy level up to 2~3 m. In this paper, we propose a 3D vision based lane-level positioning technique which can provides accurate vehicle position. The proposed method determines the current driving lane of a vehicle by tracking the 3D position of traffic signs which stand at the side of the road. Using a stereo camera, the 3D tracking paths of traffic signs are computed and their projections to the 2D road plane are used to determine the distance from the vehicle to the signs. Several experiments are performed to analyze the feasibility of the proposed method in many real roads. According to the experimental results, the proposed method can achieve 90.9% accuracy in lane-level positioning.

The Application of Satellite Positioning Technology and its Industrialization in China

  • Lizhong, Zheng;Xiuwan, Chen
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.331-336
    • /
    • 2002
  • Satellite positioning technology has been widely used in all kinds of military and civil land, marine, space and aeronautical target positioning tasks, navigation activities and accurate surveying measurements since 90s in the last century due to it advantage in providing all-weather, real-time, three dimensional and high precision positioning information, as well as speed and accurate timing information. By now, it has already formed a new hi-tech industry basically. This paper briefly reviews the development of the global satellite positioning and navigation technologies including the basic information of China′s "Plough navigation system", introduces the history of satellite positioning technology and its major application fields as well as the status quo of this being industrialized trade in China, gives an account of the writers′ vision for the application and prospect of the satellite positioning technologies in China, and approaches the tactics and stresses of the satellite positioning technology′s application and its industrialization future in China.

  • PDF

선박식별 및 추적장치의 국제동향과 전자항해전략에 관한 연구 (International Trends on Vessel Identification and Tracking and E- Navigation Strategy)

  • 정중식;남택근;김철승;박성현;임정빈;안영섭
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 춘계학술대회 및 창립 30주년 심포지엄(논문집)
    • /
    • pp.105-111
    • /
    • 2006
  • IMO COMSAR 10차 회의의 결과로 선박장거리추적식별장치(LRIT)에 대한 SOLAS 성능기준안 초안이 MSC. 81차 회의에 승인을 받기 위하여 제출되었다. LRIT는 선박자동식별장치(AIS)와 함께 모든 SOLAS 대상선박에 대한 선박모니터링시스템(VMS)에 중요한 데이터를 제공할 것이다. 본 연구는 AIS 및 LRIT의의 국제적인 동향을 조사하고, 이와 관련하여 최근 이슈가 되고 있는 전자항해 시스템의 성공적인 도입을 위한 추진방향 및 비전을 제시하고자 한다.

  • PDF

머신비젼 기반의 자율주행 차량을 위한 카메라 교정 (Camera Calibration for Machine Vision Based Autonomous Vehicles)

  • 이문규;안택진
    • 제어로봇시스템학회논문지
    • /
    • 제8권9호
    • /
    • pp.803-811
    • /
    • 2002
  • Machine vision systems are usually used to identify traffic lanes and then determine the steering angle of an autonomous vehicle in real time. The steering angle is calculated using a geometric model of various parameters including the orientation, position, and hardware specification of a camera in the machine vision system. To find the accurate values of the parameters, camera calibration is required. This paper presents a new camera-calibration algorithm using known traffic lane features, line thickness and lane width. The camera parameters considered are divided into two groups: Group I (the camera orientation, the uncertainty image scale factor, and the focal length) and Group II(the camera position). First, six control points are extracted from an image of two traffic lines and then eight nonlinear equations are generated based on the points. The least square method is used to find the estimates for the Group I parameters. Finally, values of the Group II parameters are determined using point correspondences between the image and its corresponding real world. Experimental results prove the feasibility of the proposed algorithm.

비전 센서를 갖는 이동 로봇의 복도 주행 시 직진 속도 제어 (Linear Velocity Control of the Mobile Robot with the Vision System at Corridor Navigation)

  • 권지욱;홍석교;좌동경
    • 제어로봇시스템학회논문지
    • /
    • 제13권9호
    • /
    • pp.896-902
    • /
    • 2007
  • This paper proposes a vision-based kinematic control method for mobile robots with camera-on-board. In the previous literature on the control of mobile robots using camera vision information, the forward velocity is set to be a constant, and only the rotational velocity of the robot is controlled. More efficient motion, however, is needed by controlling the forward velocity, depending on the position in the corridor. Thus, both forward and rotational velocities are controlled in the proposed method such that the mobile robots can move faster when the comer of the corridor is far away, and it slows down as it approaches the dead end of the corridor. In this way, the smooth turning motion along the corridor is possible. To this end, visual information using the camera is used to obtain the perspective lines and the distance from the current robot position to the dead end. Then, the vanishing point and the pseudo desired position are obtained, and the forward and rotational velocities are controlled by the LOS(Line Of Sight) guidance law. Both numerical and experimental results are included to demonstrate the validity of the proposed method.

Vision Sensor-Based Driving Algorithm for Indoor Automatic Guided Vehicles

  • Quan, Nguyen Van;Eum, Hyuk-Min;Lee, Jeisung;Hyun, Chang-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제13권2호
    • /
    • pp.140-146
    • /
    • 2013
  • In this paper, we describe a vision sensor-based driving algorithm for indoor automatic guided vehicles (AGVs) that facilitates a path tracking task using two mono cameras for navigation. One camera is mounted on vehicle to observe the environment and to detect markers in front of the vehicle. The other camera is attached so the view is perpendicular to the floor, which compensates for the distance between the wheels and markers. The angle and distance from the center of the two wheels to the center of marker are also obtained using these two cameras. We propose five movement patterns for AGVs to guarantee smooth performance during path tracking: starting, moving straight, pre-turning, left/right turning, and stopping. This driving algorithm based on two vision sensors gives greater flexibility to AGVs, including easy layout change, autonomy, and even economy. The algorithm was validated in an experiment using a two-wheeled mobile robot.

A Parallel Implementation of Multiple Non-overlapping Cameras for Robot Pose Estimation

  • Ragab, Mohammad Ehab;Elkabbany, Ghada Farouk
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권11호
    • /
    • pp.4103-4117
    • /
    • 2014
  • Image processing and computer vision algorithms are gaining larger concern in a variety of application areas such as robotics and man-machine interaction. Vision allows the development of flexible, intelligent, and less intrusive approaches than most of the other sensor systems. In this work, we determine the location and orientation of a mobile robot which is crucial for performing its tasks. In order to be able to operate in real time there is a need to speed up different vision routines. Therefore, we present and evaluate a method for introducing parallelism into the multiple non-overlapping camera pose estimation algorithm proposed in [1]. In this algorithm the problem has been solved in real time using multiple non-overlapping cameras and the Extended Kalman Filter (EKF). Four cameras arranged in two back-to-back pairs are put on the platform of a moving robot. An important benefit of using multiple cameras for robot pose estimation is the capability of resolving vision uncertainties such as the bas-relief ambiguity. The proposed method is based on algorithmic skeletons for low, medium and high levels of parallelization. The analysis shows that the use of a multiprocessor system enhances the system performance by about 87%. In addition, the proposed design is scalable, which is necaccery in this application where the number of features changes repeatedly.

Planar Region Extraction for Visual Navigation using Stereo Cameras

  • Lee, Se-Na;You, Bum-Jae;Ko, Sung-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.681-686
    • /
    • 2003
  • In this paper, we propose an algorithm to extract valid planar regions from stereo images for visual navigation of mobile robots. The algorithm is based on the difference image between the stereo images obtained by applying Homography matrix between stereo cameras. Illegal planar regions are filtered out by the use of labeling of the difference images and filtering of invalid blobs using the size of each blob. Also, illegal large planar regions such as walls are removed by adopting a weighted low-pass filtering of the difference image using the past difference images. The algorithms are experimented successfully by the use of stereo camera system built in a mobile robot and a PC-based real-time vision system.

  • PDF

회전 Laser 슬릿 빔을 이용한 AGV의 위치 및 자세의 검출 (Detection of AGV's position and orientation using laser slit beam)

  • 박건국;김선호;박경택;안중환
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.219-225
    • /
    • 2000
  • The major movement block of the containers have range between apron and designation points on yard in container terminal. The yard tractor operated by human takes charge of its movement in conventional container terminal. In automated container terminal, AGV(Automated Guided Vehicle) has charge of the yard tractor's role and the navigation path is ordered from upper level control system. The automated container terminal facilities must have the docking system to guide landing line to have high speed travelling and precision positioning. The general method for docking system uses the vision system with CCD camera, infra red, and laser. This paper describes the detection of AGV's position and orientation using laser slit beam to develop docking system.

  • PDF

The Edge Distribution Function Based Method of Trajectory Tracking for AGV

  • Yi, Un-Kun;Ha, Sung-Kil;Jung, Sung-Yun;Hwang, Hee-Jung;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1701-1704
    • /
    • 2005
  • We developed an machine vision method for navigation control of a traveling automatic guided vehicle(AGV) on desired trajectory with guided marks. The formulated EDF accumulates the edge magnitude for edge directions. The EDF has distinctive peak points at the vicinity of trajectory directions due to the directional and the positional continuities of desired trajectory. Examining the EDF by its shape parameters of the local maxima and symmetry axis results in identifying whether or not change in traveling direction of an AGV has occurred. Simulation results show that the presented method is useful for navigation control of AGV.

  • PDF