유출유는 해양 생태계에 큰 위협이 되므로 피해 최소화를 위해 신속한 현황정보파악이 필요하다. 위성원격탐사는 항공기에 비해 광역적 모니터링이 가능하기 때문에 시공간적 범위에서 장점을 가진다. 최근에는 딥러닝 영상인식 기술의 발전으로 인해 딥러닝을 활용한 유출유 탐지의 필요성이 대두되고 있으나, 기존의 Synthetic Aperture Radar (SAR) 영상 위주의 유출유 탐지와는 달리 고해상도 광학영상에 딥러닝 기법을 적용하는 경우는 많지 않았다. 이에, 본 연구에서는 PlanetScope 위성의 광학영상을 활용하여 유출유 레이블을 제작하고, 이를 기반으로 DeepLabV3+모델을 활용하여 유출유 탐지 모델을 구축하였으며, 암맹평가에서 정확도 0.885, 정밀도 0.888, 재현율 0.886, F1점수 0.883, 평균 교집합 대 합집합 비율(Mean Intersection over Union, mIOU) 0.793 등의 상당히 높은 정확도를 나타냈다.
Sangjoon Park;Jong Chul Ye;Eun Sun Lee;Gyeongme Cho;Jin Woo Yoon;Joo Hyeok Choi;Ijin Joo;Yoon Jin Lee
Korean Journal of Radiology
/
제24권6호
/
pp.541-552
/
2023
Objective: Detection of pneumoperitoneum using abdominal radiography, particularly in the supine position, is often challenging. This study aimed to develop and externally validate a deep learning model for the detection of pneumoperitoneum using supine and erect abdominal radiography. Materials and Methods: A model that can utilize "pneumoperitoneum" and "non-pneumoperitoneum" classes was developed through knowledge distillation. To train the proposed model with limited training data and weak labels, it was trained using a recently proposed semi-supervised learning method called distillation for self-supervised and self-train learning (DISTL), which leverages the Vision Transformer. The proposed model was first pre-trained with chest radiographs to utilize common knowledge between modalities, fine-tuned, and self-trained on labeled and unlabeled abdominal radiographs. The proposed model was trained using data from supine and erect abdominal radiographs. In total, 191212 chest radiographs (CheXpert data) were used for pre-training, and 5518 labeled and 16671 unlabeled abdominal radiographs were used for fine-tuning and self-supervised learning, respectively. The proposed model was internally validated on 389 abdominal radiographs and externally validated on 475 and 798 abdominal radiographs from the two institutions. We evaluated the performance in diagnosing pneumoperitoneum using the area under the receiver operating characteristic curve (AUC) and compared it with that of radiologists. Results: In the internal validation, the proposed model had an AUC, sensitivity, and specificity of 0.881, 85.4%, and 73.3% and 0.968, 91.1, and 95.0 for supine and erect positions, respectively. In the external validation at the two institutions, the AUCs were 0.835 and 0.852 for the supine position and 0.909 and 0.944 for the erect position. In the reader study, the readers' performances improved with the assistance of the proposed model. Conclusion: The proposed model trained with the DISTL method can accurately detect pneumoperitoneum on abdominal radiography in both the supine and erect positions.
정사영상 생성을 위한 많은 연구들이 진행되어 왔다. 기존의 방법은 정사영상을 제작할 경우, 폐색지역을 탐지하고 복원하기 위해 항공영상의 외부표정요소와 정밀 3D 객체 모델링 데이터가 필요하며, 일련의 복잡한 과정을 자동화하는 것은 어렵다. 본 논문에서는 기존의 방법에서 탈피하여 딥러닝(DL)을 이용하여 엄밀정사영상을 제작하는 새로운 방법을 제안하였다. 딥러닝은 여러 분야에서 더욱 급속하게 활용되고 있으며, 최근 생성적 적대 신경망(GAN)은 영상처리 및 컴퓨터비전 분야에서 많은 관심의 대상이다. GAN을 구성하는 생성망은 실제 영상과 유사한 결과가 생성되도록 학습을 수행하고, 판별망은 생성망의 결과가 실제 영상으로 판단될 때까지 반복적으로 수행한다. 본 논문에서 독일 사진측량, 원격탐사 및 공간정보학회(DGPF)가 구축하고 국제 사진측량 및 원격탐사학회(ISPRS)가 제공하는 데이터 셋 중에서 라이다 반사강도 데이터와 적외선 정사영상을 GAN기반의 Pix2Pix 모델 학습에 사용하여 엄밀정사영상을 생성하는 두 가지 방법을 제안하였다. 첫 번째 방법은 라이다 반사강도영상을 입력하고 고해상도의 정사영상을 목적영상으로 사용하여 학습하는 방식이고, 두 번째 방법에서도 입력영상은 첫 번째 방법과 같이 라이다 반사강도영상이지만 목적영상은 라이다 점군집 데이터에 칼라를 지정한 저해상도의 영상을 이용하여 재귀적으로 학습하여 점진적으로 화질을 개선하는 방법이다. 두 가지 방법으로 생성된 정사영상을 FID(Fréchet Inception Distance)를 이용하여 정량적 수치로 비교하면 큰 차이는 없었지만, 입력영상과 목적영상의 품질이 유사할수록, 학습 수행 시 epoch를 증가시키면 우수한 결과를 얻을 수 있었다. 본 논문은 딥러닝으로 엄밀정사영상 생성 가능성을 확인하기 위한 초기단계의 실험적 연구로서 향후 보완 및 개선할 사항을 파악할 수 있었다.
갯벌 패류양식장의 구조물 설치 및 지형적 공간배치에 따른 저서생물 현황을 파악하기 위해 고흥 남성리 양식장의 실제적인 사례를 조사하였다. 그 결과를 요약하면 다음과 같다. (1) 남성리 갯벌양식장의 지반 경사는 약 $1^{\circ}$ 미만으로 매우 평탄하며, 육지로부터 약 150 m까지는 $\sqcup$형, 그 후는 $\sqcap$형 지반형태를 가진다. $\sqcup$형 지반은 간출시 해수를 가두고 $\sqcap$형 지반은 외해 유출을 가로막을 뿐만 아니라 내부인자로서 해수 유출 시간을 지연시키는 작용/영향을 하게 될 것으로 생각된다. (2) 양식장 구분 시설물로 설치된 굴 패각 망태 또는 사석의 축제 형식은 총 5가지로 구분할 수 있으며, 양식장 대기 노출 시간과 침수시간은 각각 181분과 434분이었다. (3) 수치실험결과로서 대상해역의 내습 심해파랑은 최대파고 약 0.5m로서 매우 정온한 해역특성을 가지며, 탁월 입사파향은 나로대교 하단부는 S방향, 갯벌양식장 인근은 SE, SSW, S방향으로 조사되었다. (4) 고흥 남성리 주변 해역의 입도분석결과, 퇴적물은 Gravel 0.0~5.81(평균 1.70)%, 모래 14.15~18.39(평균 13.23)%, 실트 27.59~47.15(평균 30.84)%, 점토 35.79~55.73(평균 36.19)%로 구성되어 있으며, Folk 분류법에 의해 (g)M, sM(Sandy mud), gM(Gravelly mud)로 분류되었다. (5) 2010년 1월 남성리 패류 양식장 저서생물 현황조사에서는 총 11종이 1%이상의 우점종으로 출현하였으며 이 중 연체동물이 1종, 다모류가 8종, 갑각류가 2종이었다.
본 연구는 국내 시각장애인 대부분이 외출 시 사용 및 휴대하는 보행 용구인 흰 지팡이를 중심으로 사용성을 개선하고, 도출된 문제점에 대해서는 개선 및 해결 방안을 마련함으로써 시각장애인의 보행권 및 안전사고 예방에 기여하고자 하였다. 또한, 본 연구는 시각장애인을 대상으로 한 연구로, 우리나라 국민 중 약 25만 명에 달하는 전맹과 저시력자 중에서도 보행 용구인 흰 지팡이 없이 혼자 외출하지 못하는 20%에 해당하는 1~2급 시각장애인을 주 타깃으로 하였다. 연구하는 과정에서 디자인씽킹의 더블 다이아몬드 모델(공감하기→문제 정의하기→아이디어 내기→프로토타입 만들기→테스트(검증하기)를 통해 시각장애인이 보행 용구로 주로 사용하는 흰 지팡이의 문제점을 도출하여 사용성을 개선하고 흰 지팡이가 시각장애인이 보행하는 과정에서 실질적인 도움이 될 수 있도록 사용자 입장에서 콘셉트를 개발하였다. 공감하기를 과정에서 조사한 결과 시각장애인의 비율 증가, 모든 시각장애인을 도와줄 인력이 턱없이 부족한 상황, 시각장애인이 필수적으로 사용하는 보조 장치의 개선과 고도화, 점자블록 훼손, 불법점거, 철거, 유지 보수에 대한 문제, 시각장애인을 위한, 모두를 위한 점자블록 패러다임 제시 등 총 다섯 가지의 문제점으로 종합하였다. 아이디어 찾기와 프로토타입 만들기에서 브레인스토밍을 통해 도출된 상황들을 KJ법을 통해 그룹핑하고 관계를 설정하고 콘셉트의 방향성을 수립하기 위해 특정 상황과 주요 원인을 정리하였다. 도출된 솔루션과 주요 기능을 네 가지로 정의하고 솔루션과 주요 기능이 필요한 대표적인 상황을 두 개의 사용자 시나리오로 정리하였다. 가상의 페르소나(Persona)와 사용자 여정 맵(Customer Journey Map)을 상황에 맞춰 정리하고 3D 모델링을 통해 프로토타입을 제작하여 아이디어를 시각화하였다. 마지막으로 평가하기에서 시각장애인을 위한 길 안내용 스마트 지팡이를 ① 휴대성을 강조한 스마트 지팡이 + ② 다른 전자기기들과 호환성 + ③ 안전성과 편의성을 갖춘 제품으로 최종 콘셉트를 도출하였다.
이 연구의 목적은 1) 베트남 고등학생들을 대상으로 Lee et al. (2024)에서 보고한 개정 시스템 사고 검사 도구의 타당도를 재검증하고, 2) 연구에 참여한 우리나라 고등학생과 베트남 고등학생 간 시스템 사고 능력에 대한 차이를 알아보는 것이다. 이를 위하여 베트남 고등학생 234명이 베트남어로 번역된 개정 시스템 사고 검사 도구 20문항과 STS 척도 20문항에 응답한 자료를 활용하였다. 타당도 분석은 문항 반응 분석(Item Reliability, Item Map, Infit and Outfit MNSQ, 남녀 집단의 DIF)과 탐색적 요인 분석(프로맥스를 활용한 주축 요인 분석)을 통해 검증하고, 나아가 우리나라 고등학생 475명의 데이터를 함께 활용하여 구조 방정식 모형을 이용한 잠재평균비교를 통해 검증하였다. 연구 결과는 다음과 같다. 첫째, 베트남어로 번역된 Re_ STMI 20문항의 문항 반응 분석 결과 Item Reliability는 .97, Infit MNSQ는 .67-1.38으로 나타났으며 Item Map과 DIF 분석에서도 선행 연구에서 보고된 결과와 일치하는 결과가 도출되었다. 탐색적 요인 분석에서는 모든 문항들이 의도한 하위 요인에 적재되었으며, 요인별 신뢰도는 .662-.833, 전체 신뢰도는 .876으로 분석되었다. 우리나라 고등학생과 잠재평균비교를 위한 확인적 요인 분석에서 도출된 모형 적합도 수치는 모두 수용 가능한 값으로 분석되었다(χ2/df: 2.830, CFI: .931, TLI: .918, SRMR: .043, RMSEA: .051). 마지막으로 연구에 참여한 우리나라 고등학생과 베트남 고등학생 간 잠재평균비교에서는 시스템 분석, 정신 모델, 팀 학습, 공유비전 요인에서 작은 효과 크기가, 개인 숙련 요인에선 중간 이상의 효과 크기를 보이며, 베트남 고등학생들이 시스템 사고 능력에서 유의미하게 높은 결과를 보여주었다. 이를 통해 개정 시스템 사고 검사 도구 문항은 안정적인 신뢰도와 타당도를 가지고 있음을 확인할 수 있었다. 앞으로 학생들의 시스템 사고 연구와 관련하여 베트남어 및 영어 등으로 번역한 문항을 활용하여 시스템 사고의 국제 비교 연구도 진행할 필요성이 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.