Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
Smart Media Journal
/
v.6
no.3
/
pp.49-56
/
2017
Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.12
/
pp.2355-2373
/
2011
Vision-based vehicle detector systems are becoming increasingly important in ITS applications. Real-time operation, robustness, precision, accurate estimation of traffic parameters, and ease of setup are important features to be considered in developing such systems. Further, accurate vehicle detection is difficult in varied complex traffic environments. These environments include changes in weather as well as challenging traffic conditions, such as shadow effects and jams. To meet real-time requirements, the proposed system first applies a color background to extract moving objects, which are then tracked by considering their relative distances and directions. To achieve robustness and precision, the color background is regularly updated by the proposed algorithm to overcome luminance variations. This paper also proposes a scheme of feedback compensation to resolve background convergence errors, which occur when vehicles temporarily park on the roadside while the background image is being converged. Next, vehicle occlusion is resolved using the proposed prior split approach and through reasoning for rule-based tracking. This approach can automatically detect straight lanes. Following this step, trajectories are applied to derive traffic parameters; finally, to facilitate easy setup, we propose a means to automate the setting of the system parameters. Experimental results show that the system can operate well under various complex traffic conditions in real time.
In this paper, we propose a robust controller for trajectory control of n-link robot manipulators using feature based on visual feedback. In order to reduce tracking error of the robot manipulator due to parametric uncertainties, integral action is included in the dynamic control part of the inner control loop. The desired trajectory for tracking is generated from feature extraction by the camera mounted on the end effector. The stability of the robust state feedback control system is shown by the Lyapunov method. Simulation and experimental results on a 5-link robot manipulator with two degree of freedom show that the proposed method has good tracking performance.
Park, Joon-Hyuk;Park, Byung-Soo;Lee, Seok;Park, Sung-Kee;Kim, Munsang
제어로봇시스템학회:학술대회논문집
/
2002.10a
/
pp.100.3-100
/
2002
This paper presents the method for detection and tracking of multiple humans robustly in mobile platform. The perception of human is performed in real time through the processing of images acquired from a moving stereo vision system. We performed multi-cue integration such as human shape, skin color and depth information to detect and track each human in moving background scene. Human shape is measured by edge-based template matching on distance transformed image. Improving robustness for human detection, we apply the human face skin color in HSV color space. And we could increase the accuracy and the robustness in both detection and tracking by applying random sampling stochastic estimati...
Kim, Jeong-Ho;Lee, Dae-Woo;Heo, Se-Jong;Park, Chan-Gook;Baek, Kwang-Yul;Bang, Hyo-Choong
Journal of Institute of Control, Robotics and Systems
/
v.16
no.1
/
pp.90-95
/
2010
This paper describes the development of integrated head and eye tracker system. Vision based head tracker is performed and it has 7mm error in 300mm translation. The epi-polar method and point matching are used for determining a position of head and rotational degree. High brightness LEDs are installed on helmet and the installed pattern is very important to match the points of stereo system. Eye tracker also uses LED for constant illumination. A Position of gazed object(3m distance) is determined by pupil tracking and eye tracker has 1~5 pixel error. Integration of result data of each tracking system is important. RS-232C communication is applied to integrated system and triggering signal is used for synchronization.
Object detection and tracking is an exciting and interesting research area in the field of computer vision, and its technologies have been widely used in various application systems such as surveillance, military, and augmented reality. This paper proposes and implements a novel and more robust object recognition and tracking system to localize and track multiple objects from input images, which estimates target state using the likelihoods obtained from multiple CNNs. As the experimental result, the proposed algorithm is effective to handle multi-modal target appearances and other exceptions.
Journal of information and communication convergence engineering
/
v.20
no.3
/
pp.226-233
/
2022
Video surveillance is widely used in security surveillance, military navigation, intelligent transportation, etc. Its main research fields are pattern recognition, computer vision and artificial intelligence. This article uses OpenCV to detect and track vehicles, and monitors by establishing an adaptive model on a stationary background. Compared with traditional vehicle detection, it not only has the advantages of low price, convenient installation and maintenance, and wide monitoring range, but also can be used on the road. The intelligent analysis and processing of the scene image using CAMSHIFT tracking algorithm can collect all kinds of traffic flow parameters (including the number of vehicles in a period of time) and the specific position of vehicles at the same time, so as to solve the vehicle offset. It is reliable in operation and has high practical value.
Proceedings of the Korean Institute of Building Construction Conference
/
2021.05a
/
pp.40-41
/
2021
The construction industry has the highest occupational accidents/injuries among all industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. Therefore, this study proposed to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple-object tracking with instance segmentation. To evaluate the system's performance, we utilized the MS COCO and MOT challenge metrics. These results present that it is optimal for efficiently automating monitoring surveillance system task at construction sites.
Park, Cheonman;Lee, Seongbong;Kim, Hyeji;Lee, Dongjin
International journal of advanced smart convergence
/
v.9
no.3
/
pp.232-238
/
2020
In this paper, we study on aerial objects detection and position estimation algorithm for the safety of UAV that flight in BVLOS. We use the vision sensor and LiDAR to detect objects. We use YOLOv2 architecture based on CNN to detect objects on a 2D image. Additionally we use a clustering method to detect objects on point cloud data acquired from LiDAR. When a single sensor used, detection rate can be degraded in a specific situation depending on the characteristics of sensor. If the result of the detection algorithm using a single sensor is absent or false, we need to complement the detection accuracy. In order to complement the accuracy of detection algorithm based on a single sensor, we use the Kalman filter. And we fused the results of a single sensor to improve detection accuracy. We estimate the 3D position of the object using the pixel position of the object and distance measured to LiDAR. We verified the performance of proposed fusion algorithm by performing the simulation using the Gazebo simulator.
In this paper, a lane detection and tracking algorithm based on vision sensors and employing a robust filter for inner edge detection is proposed for developing a lane departure warning system (LDWS). The lateral offset value was precisely calculated by applying the proposed filter for inner edge detection in the region of interest. The proposed algorithm was subsequently compared with an existing algorithm having lateral offset-based warning alarm occurrence time, and an average error of approximately 15ms was observed. Tests were also conducted to verify whether a warning alarm is generated when a driver departs from a lane, and an average accuracy of approximately 94% was observed. Additionally, the proposed LDWS was implemented as an embedded system, mounted on a test vehicle, and was made to travel for approximately 100km for obtaining experimental results. Obtained results indicate that the average lane detection rates at day time and night time are approximately 97% and 96%, respectively. Furthermore, the processing time of the embedded system is found to be approximately 12fps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.