• Title/Summary/Keyword: Vision based tracking

Search Result 405, Processing Time 0.036 seconds

A seam tracking algorithm based on laser vision (레이저 카메라를 이용한 용접선의 추적)

  • Cho, Hyun-Joong;Ryu, Hyun;Oh, Se-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.593-596
    • /
    • 1996
  • A seam tracking control system with a tool position control and a camera orientation control, has been developed here. For the camera orientation contro, SOFNN was used to learn the expert control signal. The SOFNN algorithm can adjust the fuzzy set parameters and determine the fuzzy logic structure.

  • PDF

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Vision-Based Robust Control of Robot Manipulators with Jacobian Uncertainty (자코비안 불확실성을 포함하는 로봇 매니퓰레이터의 영상기반 강인제어)

  • Kim, Chin-Su;Jie, Min-Seok;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.2
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, a vision-based robust controller for tracking the desired trajectory a robot manipulator is proposed. The trajectory is generated to move the feature point into the desired position which the robot follows to reach to the desired position. To compensate the parametric uncertainties of the robot manipulator which contain in the control input, the robust controller is proposed. In addition, if there are uncertainties in the Jacobian, to compensate it, a vision-based robust controller which has control input is proposed as well in this paper. The stability of the closed-loop system is shown by Lyapunov method. The performance of the proposed method is demonstrated by simulations and experiments on a two degree of freedom 5-link robot manipulators.

  • PDF

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

A Study on Development of Laser Welding System for Bellows Outside Ege Using Vision Sensor (시각센서를 이용한 벨로우즈 외부 모서리 레이저 용접 시스템의 개발에 관한 연구)

  • 이승기;유중돈;나석주
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.71-78
    • /
    • 1999
  • The welded metal bellows is commonly manufactured by welding pairs of washer-shaped discs of thin sheet metal stamped from strip stock in thickness from 0.025 to 0.254 mm. The discs, or diaphragms, are formed with mating circumferential corrugations. In this study, the diaphragms were welded by using a CW Nd: YAG laser to form metal bellows. The bellows was fixed on a jig and compressed axially, while Cu-rings were installed between belows edges for intimate contact of edges. The difference between the inner diameter of bellows and jig shaft causes an eccentricity, while the tolerance between motor shaft and jig shaft causes a wobble type motion. A vision sensor which is based on the optical triangulation was used for seam tracking. An image processing algorithm which can distinguish the image by bellows edge from that by Cu-ring was developed. The geometric relationship which describes the eccentricity and wobble type motion was modeled. The seam tracking using the image processing algorithm and the geometric modeling was performed successfully.

  • PDF

Human Tracking using Multiple-Camera-Based Global Color Model in Intelligent Space

  • Jin Tae-Seok;Hashimoto Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2006
  • We propose an global color model based method for tracking motions of multiple human using a networked multiple-camera system in intelligent space as a human-robot coexistent system. An intelligent space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of intelligent space as well. One of the main goals of intelligent space is to assist humans and to do different services for them. In order to be capable of doing that, intelligent space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and intelligent space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Robust Vision-Based Autonomous Navigation Against Environment Changes (환경 변화에 강인한 비전 기반 로봇 자율 주행)

  • Kim, Jungho;Kweon, In So
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Recently many researches on intelligent robots have been studied. An intelligent robot is capable of recognizing environments or objects to autonomously perform specific tasks using sensor readings. One of fundamental problems in vision-based robot applications is to recognize where it is and to decide safe path to perform autonomous navigation. However, previous approaches only consider well-organized environments that there is no moving object and environment changes. In this paper, we introduce a novel navigation strategy to handle occlusions caused by moving objects using various computer vision techniques. Experimental results demonstrate the capability to overcome such difficulties for autonomous navigation.

  • PDF

A Study on the Development of Multi-User Virtual Reality Moving Platform Based on Hybrid Sensing (하이브리드 센싱 기반 다중참여형 가상현실 이동 플랫폼 개발에 관한 연구)

  • Jang, Yong Hun;Chang, Min Hyuk;Jung, Ha Hyoung
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.355-372
    • /
    • 2021
  • Recently, high-performance HMDs (Head-Mounted Display) are becoming wireless due to the growth of virtual reality technology. Accordingly, environmental constraints on the hardware usage are reduced, enabling multiple users to experience virtual reality within a single space simultaneously. Existing multi-user virtual reality platforms use the user's location tracking and motion sensing technology based on vision sensors and active markers. However, there is a decrease in immersion due to the problem of overlapping markers or frequent matching errors due to the reflected light. Goal of this study is to develop a multi-user virtual reality moving platform in a single space that can resolve sensing errors and user immersion decrease. In order to achieve this goal hybrid sensing technology was developed, which is the convergence of vision sensor technology for position tracking, IMU (Inertial Measurement Unit) sensor motion capture technology and gesture recognition technology based on smart gloves. In addition, integrated safety operation system was developed which does not decrease the immersion but ensures the safety of the users and supports multimodal feedback. A 6 m×6 m×2.4 m test bed was configured to verify the effectiveness of the multi-user virtual reality moving platform for four users.

Object Tracking Algorithm based on Siamese Network with Local Overlap Confidence (지역 중첩 신뢰도가 적용된 샴 네트워크 기반 객체 추적 알고리즘)

  • Su-Chang Lim;Jong-Chan Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1109-1116
    • /
    • 2023
  • Object tracking is used to track a goal in a video sequence by using coordinate information provided as annotation in the first frame of the video. In this paper, we propose a tracking algorithm that combines deep features and region inference modules to improve object tracking accuracy. In order to obtain sufficient object information, a convolution neural network was designed with a Siamese network structure. For object region inference, the region proposal network and overlapping confidence module were applied and used for tracking. The performance of the proposed tracking algorithm was evaluated using the Object Tracking Benchmark dataset, and it achieved 69.1% in the Success index and 89.3% in the Precision Metrics.

A Study on IMM-PDAF based Sensor Fusion Method for Compensating Lateral Errors of Detected Vehicles Using Radar and Vision Sensors (레이더와 비전 센서를 이용하여 선행차량의 횡방향 운동상태를 보정하기 위한 IMM-PDAF 기반 센서융합 기법 연구)

  • Jang, Sung-woo;Kang, Yeon-sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.633-642
    • /
    • 2016
  • It is important for advanced active safety systems and autonomous driving cars to get the accurate estimates of the nearby vehicles in order to increase their safety and performance. This paper proposes a sensor fusion method for radar and vision sensors to accurately estimate the state of the preceding vehicles. In particular, we performed a study on compensating for the lateral state error on automotive radar sensors by using a vision sensor. The proposed method is based on the Interactive Multiple Model(IMM) algorithm, which stochastically integrates the multiple Kalman Filters with the multiple models depending on lateral-compensation mode and radar-single sensor mode. In addition, a Probabilistic Data Association Filter(PDAF) is utilized as a data association method to improve the reliability of the estimates under a cluttered radar environment. A two-step correction method is used in the Kalman filter, which efficiently associates both the radar and vision measurements into single state estimates. Finally, the proposed method is validated through off-line simulations using measurements obtained from a field test in an actual road environment.