• Title/Summary/Keyword: Vision based localization

Search Result 137, Processing Time 0.029 seconds

Real-Time Mapping of Mobile Robot on Stereo Vision (스테레오 비전 기반 이동 로봇의 실시간 지도 작성 기법)

  • Han, Cheol-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.1
    • /
    • pp.60-65
    • /
    • 2010
  • This paper describes the results of 2D mapping, feature detection and matching to create the surrounding environment in the mounted stereo camera on Mobile robot. Extract method of image's feature in real-time processing for quick operation uses the edge detection and Sum of Absolute Difference(SAD), stereo matching technique can be obtained through the correlation coefficient. To estimate the location of a mobile robot using ZigBee beacon and encoders mounted on the robot is estimated by Kalman filter. In addition, the merged gyro scope to measure compass is possible to generate map during mobile robot is moving. The Simultaneous Localization and Mapping (SLAM) of mobile robot technology with an intelligent robot can be applied efficiently in human life would be based.

Mobile Robots for the Concrete Crack Search and Sealing (콘크리트 크랙 탐색 및 실링을 위한 다수의 자율주행로봇)

  • Jin, Sung-Hun;Cho, Cheol-Joo;Lim, Kye-Young
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.60-72
    • /
    • 2016
  • This study proposes a multi-robot system, using multiple autonomous robots, to explore concrete structures and assist in their maintenance by sealing any cracks present in the structure. The proposed system employed a new self-localization method that is essential for autonomous robots, along with a visualization system to recognize the external environment and to detect and explore cracks efficiently. Moreover, more efficient crack search in an unknown environment became possible by arranging the robots into search areas divided depending on the surrounding situations. Operations with increased efficiency were also realized by overcoming the disadvantages of the infeasible logical behavioral model design with only six basic behavioral strategies based on distributed control-one of the methods to control swarm robots. Finally, this study investigated the efficiency of the proposed multi-robot system via basic sensor testing and simulation.

IoT Based Intelligent Position and Posture Control of Home Wellness Robots (홈 웰니스 로봇의 사물인터넷 기반 지능형 자기 위치 및 자세 제어)

  • Lee, Byoungsu;Hyun, Chang-Ho;Kim, Seungwoo
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.636-644
    • /
    • 2014
  • This paper is to technically implement the sensing platform for Home-Wellness Robot. First, self-localization technique is based on a smart home and object in a home environment, and IOT(Internet of Thing) between Home Wellness Robots. RF tag is set in a smart home and the absolute coordinate information is acquired by a object included RF reader. Then bluetooth communication between object and home wellness robot provides the absolute coordinate information to home wellness robot. After that, the relative coordinate of home wellness robot is found and self-localization through a stereo camera in a home wellness robot. Second, this paper proposed fuzzy control methode based on a vision sensor for approach object of home wellness robot. Based on a stereo camera equipped with face of home wellness robot, depth information to the object is extracted. Then figure out the angle difference between the object and home wellness robot by calculating a warped angle based on the center of the image. The obtained information is written Look-Up table and makes the attitude control for approaching object. Through the experimental with home wellness robot and the smart home environment, confirm performance about the proposed self-localization and posture control method respectively.

Efficient Object Localization using Color Correlation Back-projection (칼라 상관관계 역투영법을 적용한 효율적인 객체 지역화 기법)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.263-271
    • /
    • 2016
  • Localizing an object in image is a common task in the field of computer vision. As the existing methods provide a detection for the single object in an image, they have an utilization limit for the use of the application, due to similar objects are in the actual picture. This paper proposes an efficient method of object localization for image recognition. The new proposed method uses color correlation back-projection in the YCbCr chromaticity color space to deal with the object localization problem. Using the proposed algorithm enables users to detect and locate primary location of object within the image, as well as candidate regions can be detected accurately without any information about object counts. To evaluate performance of the proposed algorithm, we estimate success rate of locating object with common used image database. Experimental results reveal that improvement of 21% success ratio was observed. This study builds on spatially localized color features and correlation-based localization, and the main contribution of this paper is that a different way of using correlogram is applied in object localization.

Mobile Robot Localization and Mapping using Scale-Invariant Features (스케일 불변 특징을 이용한 이동 로봇의 위치 추정 및 매핑)

  • Lee, Jong-Shill;Shen, Dong-Fan;Kwon, Oh-Sang;Lee, Eung-Hyuk;Hong, Seung-Hong
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.7-18
    • /
    • 2005
  • A key component of an autonomous mobile robot is to localize itself accurately and build a map of the environment simultaneously. In this paper, we propose a vision-based mobile robot localization and mapping algorithm using scale-invariant features. A camera with fisheye lens facing toward to ceiling is attached to the robot to acquire high-level features with scale invariance. These features are used in map building and localization process. As pre-processing, input images from fisheye lens are calibrated to remove radial distortion then labeling and convex hull techniques are used to segment ceiling region from wall region. At initial map building process, features are calculated for segmented regions and stored in map database. Features are continuously calculated from sequential input images and matched against existing map until map building process is finished. If features are not matched, they are added to the existing map. Localization is done simultaneously with feature matching at map building process. Localization. is performed when features are matched with existing map and map building database is updated at same time. The proposed method can perform a map building in 2 minutes on $50m^2$ area. The positioning accuracy is ${\pm}13cm$, the average error on robot angle with the positioning is ${\pm}3$ degree.

  • PDF

Vision-Based Self-Localization of Autonomous Guided Vehicle Using Landmarks of Colored Pentagons (컬러 오각형을 이정표로 사용한 무인자동차의 위치 인식)

  • Kim Youngsam;Park Eunjong;Kim Joonchoel;Lee Joonwhoan
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.387-394
    • /
    • 2005
  • This paper describes an idea for determining self-localization using visual landmark. The critical geometric dimensions of a pentagon are used here to locate the relative position of the mobile robot with respect to the pattern. This method has the advantages of simplicity and flexibility. This pentagon is also provided nth a unique identification, using invariant features and colors that enable the system to find the absolute location of the patterns. This algorithm determines both the correspondence between observed landmarks and a stored sequence, computes the absolute location of the observer using those correspondences, and calculates relative position from a pentagon using its (ive vortices. The algorithm has been implemented and tested. In several trials it computes location accurate to within 5 centimeters in less than 0.3 second.

Bridge Inspection and condition assessment using Unmanned Aerial Vehicles (UAVs): Major challenges and solutions from a practical perspective

  • Jung, Hyung-Jo;Lee, Jin-Hwan;Yoon, Sungsik;Kim, In-Ho
    • Smart Structures and Systems
    • /
    • v.24 no.5
    • /
    • pp.669-681
    • /
    • 2019
  • Bridge collapses may deliver a huge impact on our society in a very negative way. Out of many reasons why bridges collapse, poor maintenance is becoming a main contributing factor to many recent collapses. Furthermore, the aging of bridges is able to make the situation much worse. In order to prevent this unwanted event, it is indispensable to conduct continuous bridge monitoring and timely maintenance. Visual inspection is the most widely used method, but it is heavily dependent on the experience of the inspectors. It is also time-consuming, labor-intensive, costly, disruptive, and even unsafe for the inspectors. In order to address its limitations, in recent years increasing interests have been paid to the use of unmanned aerial vehicles (UAVs), which is expected to make the inspection process safer, faster and more cost-effective. In addition, it can cover the area where it is too hard to reach by inspectors. However, this strategy is still in a primitive stage because there are many things to be addressed for real implementation. In this paper, a typical procedure of bridge inspection using UAVs consisting of three phases (i.e., pre-inspection, inspection, and post-inspection phases) and the detailed tasks by phase are described. Also, three major challenges, which are related to a UAV's flight, image data acquisition, and damage identification, respectively, are identified from a practical perspective (e.g., localization of a UAV under the bridge, high-quality image capture, etc.) and their possible solutions are discussed by examining recently developed or currently developing techniques such as the graph-based localization algorithm, and the image quality assessment and enhancement strategy. In particular, deep learning based algorithms such as R-CNN and Mask R-CNN for classifying, localizing and quantifying several damage types (e.g., cracks, corrosion, spalling, efflorescence, etc.) in an automatic manner are discussed. This strategy is based on a huge amount of image data obtained from unmanned inspection equipment consisting of the UAV and imaging devices (vision and IR cameras).

Trends in Temporal Action Detection in Untrimmed Videos (시간적 행동 탐지 기술 동향)

  • Moon, Jinyoung;Kim, Hyungil;Park, Jongyoul
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.3
    • /
    • pp.20-33
    • /
    • 2020
  • Temporal action detection (TAD) in untrimmed videos is an important but a challenging problem in the field of computer vision and has gathered increasing interest recently. Although most studies on action in videos have addressed action recognition in trimmed videos, TAD methods are required to understand real-world untrimmed videos, including mostly background and some meaningful action instances belonging to multiple action classes. TAD is mainly composed of temporal action localization that generates temporal action proposals, such as single action and action recognition, which classifies action proposals into action classes. However, the task of generating temporal action proposals with accurate temporal boundaries is challenging in TAD. In this paper, we discuss TAD technologies that are considered high performance in terms of representative TAD studies based on deep learning. Further, we investigate evaluation methodologies for TAD, such as benchmark datasets and performance measures, and subsequently compare the performance of the discussed TAD models.

Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model (형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법)

  • Lee, Jong-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

Chessboard and Pieces Detection for Janggi Chess Playing Robot

  • Nhat, Vo Quang;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.16-21
    • /
    • 2013
  • Vision system is an indispensable part of constructing the chess-playing robot. Chessboard detection and pieces localization in the captured image of robot's camera are important steps for processes followed such as pieces recognition, move calculation, and robot controlling. We present a method for detecting the Janggi chessboard and pieces based on the edge and color feature. Hough transform combined with line extraction is used for segmenting the chessboard and warping it to form the rectangle shape in order to detect and interpolate the lines of chessboard. Then we detect the existence of pieces and their side by applying the saliency map and checking the color distribution at piece locations. While other methods either work only with the empty chessboard or do not care about the piece existence, our method could detect sufficiently side and position of pieces as well as lines of the chessboard even if the occlusion happens.