• Title/Summary/Keyword: Vision algorithm

Search Result 1,622, Processing Time 0.033 seconds

Development of Mounting System for MLAG Chip using Vision (Vision을 이용한 MLGA Chip 장착시스템 개발)

  • 노병옥;강판식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.661-665
    • /
    • 2000
  • In this study, the control of mounting system for MLGA package was developed using machine vision for the control of rotating position compensation and mounting position of X-Y table. Two type of material (polymer, alumina )were used for the dielectric insulator of the MLGA. And the illumination system and the algorithm of position compensation that be suitable for these materials was developed. Also, the position control order that compensated by machine vision actuated to micro stepping motor and X-Y servo motor by controlled PC and mounted the MLGA on PCB in resolution to$\pm10\mum$ .

  • PDF

Design of an Intelligent Robot Control System Using Neural Network (신경회로망을 이용한 지능형 로봇 제어 시스템 설계)

  • 정동연;서운학;한성현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.279-279
    • /
    • 2000
  • In this paper, we have proposed a new approach to the design of robot vision system to develop the technology for the automatic test and assembling of precision mechanical and electronic parts fur the factory automation. In order to perform real time implementation of the automatic assembling tasks in the complex processes, we have developed an intelligent control algorithm based-on neural networks control theory to enhance the precise motion control. Implementing of the automatic test tasks has been performed by the real-time vision algorithm based-on TMS320C31 DSPs. It distinguishes correctly the difference between the acceptable and unacceptable defective item through pattern recognition of parts by the developed vision algorithm. Finally, the performance of proposed robot vision system has been illustrated by experiment for the similar model of fifth cell among the twelve cell fur automatic test and assembling in S company.

  • PDF

An Adaptive Complementary Filter For Gyroscope/Vision Integrated Attitude Estimation

  • Park, Chan Gook;Kang, Chang Ho;Hwang, Sanghyun;Chung, Chul Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.214-221
    • /
    • 2016
  • An attitude estimation algorithm which integrates gyroscope and vision measurements using an adaptive complementary filter is proposed in this paper. In order to make the filter more tolerant to vision measurement fault and more robust to system dynamics, fuzzy interpolator is applied. For recognizing the dynamic condition of the system and vision measurement fault, the cut-off frequency of the complementary filter is determined adaptively by using the fuzzy logic with designed membership functions. The performance of the proposed algorithm is evaluated by experiments and it is confirmed that proposed algorithm works well in the static or dynamic condition.

A Study on the Vision Sensor Using Scanning Beam for Welding Process Automation (용접자동화를 위한 주사빔을 이용한 시각센서에 관한 연구)

  • You, Won-Sang;Na, Suck-Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.3
    • /
    • pp.891-900
    • /
    • 1996
  • The vision sensor which is based on the optical triangulation theory with the laser as an auxiliary light source can detect not only the seam position but the shape of seam. In this study, a vision sensor using the scanning laser beam was investigated. To design the vision sensor which considers the reflectivity of the sensing object and satisfies the desired resolution and measuring range, the equation of the focused laser beam which has a Gaussian irradiance profile was firstly formulated, Secondly, the image formaing sequence, and thirdly the relation between the displacement in the measuring surface and the displacement in the camera plane was formulated. Therefore, the focused beam diameter in the measuring range could be determined and the influence of the relative location between the laser and camera plane could be estimated. The measuring range and the resolution of the vision sensor which was based on the Scheimpflug's condition could also be calculated. From the results mentioned above a vision sensor was developed, and an adequate calibration technique was proposed. The image processing algorithm which and recognize the center of joint and its shape informaitons was investigated. Using the developed vision sensor and image processing algorithm, the shape informations was investigated. Using the developed vision sensor and image processing algorithm, the shape informations of the vee-, butt- and lap joint were extracted.

Development of Vision Inspection System for Defects of Industrial Wire Harness (산업용Wire Harness Vision 검사 장비 개발)

  • Han, Seung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.4
    • /
    • pp.189-194
    • /
    • 2008
  • This paper presents vision based inspection system for defects of industrial wire harness. Five type of nonconformities facter such as barrel deform, projected wire, overcoating, rack of wire length, over-strip is considered. Developed inspectio algorithmn has been tested on real specimens from a wire harness factory. Experimental results show that the inspection algorithm an has a good performance.

  • PDF

Development of a Vision-based Crack Detection Algorithm for Bridge Inspection (교량점검을 위한 비전 기반의 균열검출 알고리즘 개발)

  • Kim, Jin-Oh;Park, Dong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.642-646
    • /
    • 2008
  • We have developed a vision based crack detection system and algorithm to inspect base side of bridges. After human operator decides from vision images captured if lines on base side are cracks or dirt, our algorithm finds automatically the length, the width and the shape of cracks. The system has been tested with a robot extender on a truck in real environment and has been proved to be very useful to reduce inspection cost as well as the data management.

An Obstacle Avoidance Trajectory Planning for a Quadruped Walking Robot Using Vision and PSD sensor

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.1-105
    • /
    • 2002
  • $\textbullet$ This paper deals with obstacle avoidance of a quadruped robot with a vision system and a PSD sensor. $\textbullet$ The vision system needs for obstacle recognition toward robot. $\textbullet$ Ths PSD sensor is also important element for obstacle recognition. $\textbullet$ We propose algorithm that recognizes obstacles with one vision and PSD sensor. $\textbullet$ We also propose obstacle avoidance algorithm with map from obstacle recognition algorithm. $\textbullet$ Using these algorithm, Quadruped robot can generate gait trajectory. $\textbullet$ Therefore, robot can avoid obstacls, and can move to target point.

  • PDF

Light Source Target Detection Algorithm for Vision-based UAV Recovery

  • Won, Dae-Yeon;Tahk, Min-Jea;Roh, Eun-Jung;Shin, Sung-Sik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.114-120
    • /
    • 2008
  • In the vision-based recovery phase, a terminal guidance for the blended-wing UAV requires visual information of high accuracy. This paper presents the light source target design and detection algorithm for vision-based UAV recovery. We propose a recovery target design with red and green LEDs. This frame provides the relative position between the target and the UAV. The target detection algorithm includes HSV-based segmentation, morphology, and blob processing. These techniques are employed to give efficient detection results in day and night net recovery operations. The performance of the proposed target design and detection algorithm are evaluated through ground-based experiments.

Implementation of Image Processing System for the Defect Inspection of Color Polyethylene (칼라팔레트의 불량 식별을 위한 영상처리 시스템 구현)

  • 김경민;박중조;송명현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1157-1162
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the color product.(bad pallets) An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE color pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labelling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets. The labelling algorithm permits to separate all of the connected components appearing on the pallets. Labelling the connected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. Also, we suggested vision processing program in window environment. Simulations and experimental results demonstrate the performance of the proposal algorithm.

  • PDF

Experimental Study of Spacecraft Pose Estimation Algorithm Using Vision-based Sensor

  • Hyun, Jeonghoon;Eun, Youngho;Park, Sang-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.263-277
    • /
    • 2018
  • This paper presents a vision-based relative pose estimation algorithm and its validation through both numerical and hardware experiments. The algorithm and the hardware system were simultaneously designed considering actual experimental conditions. Two estimation techniques were utilized to estimate relative pose; one was a nonlinear least square method for initial estimation, and the other was an extended Kalman Filter for subsequent on-line estimation. A measurement model of the vision sensor and equations of motion including nonlinear perturbations were utilized in the estimation process. Numerical simulations were performed and analyzed for both the autonomous docking and formation flying scenarios. A configuration of LED-based beacons was designed to avoid measurement singularity, and its structural information was implemented in the estimation algorithm. The proposed algorithm was verified again in the experimental environment by using the Autonomous Spacecraft Test Environment for Rendezvous In proXimity (ASTERIX) facility. Additionally, a laser distance meter was added to the estimation algorithm to improve the relative position estimation accuracy. Throughout this study, the performance required for autonomous docking could be presented by confirming the change in estimation accuracy with respect to the level of measurement error. In addition, hardware experiments confirmed the effectiveness of the suggested algorithm and its applicability to actual tasks in the real world.